首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   4篇
  国内免费   1篇
耳鼻咽喉   1篇
儿科学   1篇
基础医学   5篇
临床医学   8篇
内科学   10篇
神经病学   1篇
特种医学   26篇
外科学   1篇
预防医学   1篇
药学   11篇
肿瘤学   42篇
  2022年   3篇
  2019年   1篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   6篇
  2012年   5篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   6篇
  2006年   4篇
  2004年   2篇
  2003年   4篇
  2002年   5篇
  2001年   7篇
  2000年   7篇
  1999年   8篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1987年   1篇
  1986年   2篇
  1958年   1篇
  1957年   3篇
  1956年   1篇
  1955年   2篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
1.
Previously, we demonstrated that wrapping dextran fluorescein anionic/cationic lipid complexes with neutral lipids produced a stable formulation that markedly increased the duration of the compound in plasma after intravenous administration to rats. The improved drug-delivery properties of the wrapped liposomes (WL) relative to other formulations suggested that this technology could offer important advantages for the administration of other polyanionic drugs, including antisense oligodeoxynucleotides (ODN). In the present study, we investigated the value of WL for formulating fluorescence-labeled phosphorothioated ODN (F-ODN). WL encapsulating F-ODN/cationic lipid complexes were prepared efficiently using similar methodology to that used in our earlier study. Studies confirmed that these WL were stable in vitro. Following intravenous administration to mice, free F-ODN and naked F-ODN/cationic lipid complexes were rapidly eliminated whereas administration of the WL resulted in high blood concentrations of drug that were maintained for several hours. Additional studies were conducted in mice that were inoculated with tumor cells (Caki-1 xenograft model, human kidney); in these experiments, intravenous administration of WL delivered 13 times more F-ODN to the tumor site than achieved after injection of free F-ODN.  相似文献   
2.
Summary Novel derivatives of K-252a, (8R*,9S*,11S*)-(–)-9-hydroxy-9-methoxycarbonyl-8-methyl-2,3,9,10-tetrahydro-8, 11-epoxy-1H,8H,11H-2,7b,11a-triazadibenzo [a,g]-cycloocta[cde]trinden-1-one, an inhibitor of protein kinases and calmodulin-dependent phosphodiesterase, were synthesized and evaluated for their antitumor activity in vitro and in vivo. Of ten derivatives tested, four were active against the P388 murine leukemia i. p.-i. p. system, although K-252a was inactive. Among these derivatives, KT6124 was selected for further biological evaluation studies because its efficacy was the highest. KT6124 was also active against sarcoma 180 and B16 melanoma. It exerted a relatively broad spectrum of antiproliferative activity against 20 human tumor cell lines in vitro. To determine the mechanism(s) of action underlying the antitumor activity of KT6124, we tested the drug for inhibition of protein kinases, including Ca2+-and phospholipid-dependent protein kinase (PKC), in intact A431 human epidermoid carcinoma cells in comparison with the PKC-inhibitory activity of K-252a. KT6124 did not antagonize the action of phorbol 12-myristate 13-acetate (PMA) in A431 cells, whereas K-252a did, suggesting that KT6124 may not act on protein kinases in the cells. The interaction of KT6124 with DNA in living cells was examined by the alkaline elution method. KT6124 apparantly exhibited DNA scission both dose-and time-dependently in the target cells. The DNA breakage was dependent on proteinase K treatment, suggesting its possible interaction with DNA-related enzyme(s). These results indicate that KT6124 exerts antitumor activity by acting on DNA or on DNA-related enzyme(s) in tumor cells rather than via the inhibition of protein kinases.  相似文献   
3.
Forensic Toxicology - In this study, we proposed a new sensitive quantitative method for detecting helium in human blood by gas chromatography–selected-ion monitoring (SIM)-mass spectrometry...  相似文献   
4.
5.
A yeast-based growth interference assay was developed utilizing a yeast strain in which expression of Xenopus cyclin A1 was induced to elevate cell division cycle 28 (Cdc28) kinase activity. Since the hyperactivation of Cdc28 kinase in yeast results in a growth-arrest phenotype, compounds which could rescue the cyclin A1-induced growth arrest might be potential new, antitumor drug candidates acting on the cyclin-dependent, kinase-mediated, cell cycle regulation pathway. In the course of our microbial screening program, the new Streptomyces metabolites, belactosins, were identified. As reported previously, belactosin A induced cell cycle arrest at G2/M phase in human cancer cells. However, the molecular mechanism of action was unknown. We herein demonstrate the proteasome inhibition by belactosin A. Belactosin A did not inhibit yeast Cdc28 kinase and human cyclin-dependent kinase in vitro. On the other hand, it inhibited the chymotrypsin-like activity of the rabbit 20S proteasome. From the initial SAR studies, we identified a hydrophobic belactosin A derivative, KF33955, which exhibited a 100-fold greater growth-inhibitory activity against HeLa S3 cells than belactosin A, presumably due to its higher cell permeability. The biochemical analysis using KF33955 suggested that the proteasome inhibitory activity of KF33955 were irreversible and required the beta-lactone moiety to inhibit the proteasome. KF33955 increased the intracellular levels of protein ubiquitination in NIH3T3 cells. In addition, KF33955 treatment resulted in the accumulation of known proteasome substrates in HeLa S3 cells. These results identify belactosin A as a useful lead compound to target proteasome for the treatment of disease whose etiology is dependent on the unregulated ubiquitin-proteasome pathway.  相似文献   
6.
7.
Telomerase, the enzyme responsible for proliferative immortality, is expressed in essentially all cancer cells, but not in most normal human cells. Thus, specific telomerase inhibition is potentially a universal anticancer therapy with few side effects. We designed N3'-->P5' thio-phosphoramidate (NPS) oligonucleotides as telomerase template antagonists and found that their ability to form stable duplexes with the telomerase RNA subunit was the key factor for antitelomerase activity. In biochemical assays 11-13-mer NPS oligonucleotides demonstrated sequence- and dose-dependent inhibition of telomerase with IC(50) values <1 nM. Optimization of the sequence, length, and bioavailability resulted in the selection of a 13-mer NPS oligonucleotide, GRN163, as a drug development candidate. GRN163 inhibited telomerase in a cell-free assay at 45 +/- 7 pM, and in various tumor cell lines at approximately 1 nM and approximately 0.3-1.0 micro M in the presence and absence of carriers, respectively. GRN163 was competitive with telomeric primer binding, primarily because of hybridization to human telomerase RNA (hTR) component. Tumor cells treated with GRN163 in culture underwent telomere shortening, followed by cellular senescence or apoptosis after a period of time that generally correlated with initial telomere length. In a flank DU145 (prostate cancer) xenograft model, parenterally administered GRN163 caused suppression of tumor growth in the absence of gross toxicity. These data demonstrate that GRN163 has significant potential for additional development as an anticancer agent.  相似文献   
8.
9.
A novel photosensitizer with magnetic resonance imaging (MRI) activity was designed from fullerene (C(60)) for efficient photodynamic therapy (PDT) of tumor. After chemical conjugation of polyethylene glycol (PEG) to C(60) (C(60)-PEG), diethylenetriaminepentaacetic acid (DTPA) was subsequently introduced to the terminal group of PEG to prepare PEG-conjugated C(60) (C(60)-PEG-DTPA). The C(60)-PEG-DTPA was mixed with gadolinium acetate solution to obtain Gd(3+)-chelated C(60)-PEG (C(60)-PEG-Gd). Following intravenous injection of C(60)-PEG-Gd into tumor-bearing mice, the PDT anti-tumor effect and the MRI tumor imaging were evaluated. The similar O(2)(*-)generation was observed with or without Gd(3+) chelation upon light irradiation. Both of the C(60)-PEG-Gd and Magnevist(R) aqueous solutions exhibited a similar MRI activity. When intravenously injected into tumor-bearing mice, the C(60)-PEG-Gd maintained an enhanced MRI signal at the tumor tissue for a longer time period than Magnevist(R). Injection of C(60)-PEG-Gd plus light irradiation showed significant tumor PDT effect although the effect depended on the timing of light irradiation. The PDT efficacy of C(60)-PEG-Gd was observed at the time when the tumor accumulation was detected by the enhanced intensity of MRI signal. This therapeutic and diagnostic hybrid system is a promising tool to enhance the PDT efficacy for tumor.  相似文献   
10.
In the present study, we investigated the influence of the oxidative damage to astrocytes on neuronal cell survival using cultures of rat cerebral astrocytes and neurons. The exposure of astrocytes to hyperbaric oxygen induced a time-dependent apoptotic cell death, as observed by DNA ladder assessment. When astrocytes damaged by oxidative stress were cocultured with normal neurons from the cerebrum of a newborn rat, neuronal cell death was markedly induced, although normal astrocytes not subjected to hyperoxia cocultured with normal neurons showed no neuronal cell apoptosis. It was found that either the supernatant from the homogenate of astrocytes cultured in hyperbaric oxygen atmosphere or a protein mixture extracted from the supernatant induced neuronal cell death. The level of protein carbonyls, an index of protein oxidation analysis, in cultured astrocytes increased significantly with oxidative stress, and vitamin E inhibited the increase in the level of such oxidized proteins in astrocytes. Furthermore, a two-dimensional (2D) electrophoresis of a protein mixture extracted from the supernatant showed several changes in proteins. These results imply that reactive oxygen species (ROS) induced by oxidative stress attack astrocytes to induce oxidatively denatured proteins in the cells that act as a neurotoxic factor, and that vitamin E protects neurons by inhibiting astrocyte apoptosis caused by oxidative stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号