首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15844篇
  免费   2627篇
  国内免费   368篇
耳鼻咽喉   126篇
儿科学   714篇
妇产科学   361篇
基础医学   1480篇
口腔科学   194篇
临床医学   2041篇
内科学   4659篇
皮肤病学   319篇
神经病学   1302篇
特种医学   305篇
外科学   2126篇
综合类   1134篇
现状与发展   1篇
一般理论   5篇
预防医学   1476篇
眼科学   687篇
药学   791篇
  2篇
中国医学   188篇
肿瘤学   928篇
  2024年   39篇
  2023年   412篇
  2022年   174篇
  2021年   436篇
  2020年   418篇
  2019年   198篇
  2018年   756篇
  2017年   756篇
  2016年   810篇
  2015年   780篇
  2014年   708篇
  2013年   968篇
  2012年   983篇
  2011年   945篇
  2010年   828篇
  2009年   837篇
  2008年   758篇
  2007年   759篇
  2006年   579篇
  2005年   705篇
  2004年   1135篇
  2003年   962篇
  2002年   741篇
  2001年   662篇
  2000年   288篇
  1999年   328篇
  1998年   361篇
  1997年   292篇
  1996年   136篇
  1995年   98篇
  1994年   83篇
  1993年   105篇
  1992年   90篇
  1991年   52篇
  1990年   60篇
  1989年   59篇
  1988年   56篇
  1987年   45篇
  1986年   38篇
  1985年   22篇
  1984年   20篇
  1983年   19篇
  1982年   19篇
  1981年   22篇
  1980年   14篇
  1977年   13篇
  1975年   13篇
  1974年   18篇
  1968年   17篇
  1928年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
BACKGROUND AND PURPOSE:Accurate and reliable detection of white matter hyperintensities and their volume quantification can provide valuable clinical information to assess neurologic disease progression. In this work, a stacked generalization ensemble of orthogonal 3D convolutional neural networks, StackGen-Net, is explored for improving automated detection of white matter hyperintensities in 3D T2-FLAIR images.MATERIALS AND METHODS:Individual convolutional neural networks in StackGen-Net were trained on 2.5D patches from orthogonal reformatting of 3D-FLAIR (n = 21) to yield white matter hyperintensity posteriors. A meta convolutional neural network was trained to learn the functional mapping from orthogonal white matter hyperintensity posteriors to the final white matter hyperintensity prediction. The impact of training data and architecture choices on white matter hyperintensity segmentation performance was systematically evaluated on a test cohort (n = 9). The segmentation performance of StackGen-Net was compared with state-of-the-art convolutional neural network techniques on an independent test cohort from the Alzheimer’s Disease Neuroimaging Initiative-3 (n = 20).RESULTS:StackGen-Net outperformed individual convolutional neural networks in the ensemble and their combination using averaging or majority voting. In a comparison with state-of-the-art white matter hyperintensity segmentation techniques, StackGen-Net achieved a significantly higher Dice score (0.76 [SD, 0.08], F1-lesion (0.74 [SD, 0.13]), and area under precision-recall curve (0.84 [SD, 0.09]), and the lowest absolute volume difference (13.3% [SD, 9.1%]). StackGen-Net performance in Dice scores (median = 0.74) did not significantly differ (P = .22) from interobserver (median = 0.73) variability between 2 experienced neuroradiologists. We found no significant difference (P = .15) in white matter hyperintensity lesion volumes from StackGen-Net predictions and ground truth annotations.CONCLUSIONS:A stacked generalization of convolutional neural networks, utilizing multiplanar lesion information using 2.5D spatial context, greatly improved the segmentation performance of StackGen-Net compared with traditional ensemble techniques and some state-of-the-art deep learning models for 3D-FLAIR.

White matter hyperintensities (WMHs) correspond to pathologic features of axonal degeneration, demyelination, and gliosis observed within cerebral white matter.1 Clinically, the extent of WMHs in the brain has been associated with cognitive impairment, Alzheimer’s disease and vascular dementia, and increased risk of stroke.2,3 The detection and quantification of WMH volumes to monitor lesion burden evolution and its correlation with clinical outcomes have been of interest in clinical research.4,5 Although the extent of WMHs can be visually scored,6 the categoric nature of such scoring systems makes quantitative evaluation of disease progression difficult. Manually segmenting WMHs is tedious, prone to inter- and intraobserver variability, and is, in most cases, impractical. Thus, there is an increased interest in developing fast, accurate, and reliable computer-aided automated techniques for WMH segmentation.Convolutional neural network (CNN)-based approaches have been successful in several semantic segmentation tasks in medical imaging.7 Recent works have proposed using deep learning–based methods for segmenting WMHs using 2D-FLAIR images.8-11 More recently, a WMH segmentation challenge12 was also organized (http://wmh.isi.uu.nl/) to facilitate comparison of automated segmentation of WMHs of presumed vascular origin in 2D multislice T2-FLAIR images. Architectures that used an ensemble of separately trained CNNs showed promising results in this challenge, with 3 of the top 5 winners using ensemble-based techniques.12Conventional 2D-FLAIR images are typically acquired with thick slices (3–4 mm) and possible slice gaps. Partial volume effects from a thick slice are likely to affect the detection of smaller lesions, both in-plane and out-of-plane. 3D-FLAIR images, with isotropic resolution, have been shown to achieve higher resolution and contrast-to-noise ratio13 and have shown promising results in MS lesion detection using 3D CNNs.14 Additionally, the isotropic resolution enables viewing and evaluation of the images in multiple planes. This multiplanar reformatting of 3D-FLAIR without the use of interpolating kernels is only possible due to the isotropic nature of the acquisition. Network architectures that use information from the 3 orthogonal views have been explored in recent works for CNN-based segmentation of 3D MR imaging data.15 The use of data from multiple planes allows more spatial context during training without the computational burden associated with full 3D training.16 The use of 3 orthogonal views simultaneously mirrors how humans approach this segmentation task.Ensembles of CNNs have been shown to average away the variances in the solution and the choice of model- and configuration-specific behaviors of CNNs.17 Traditionally, the solutions from these separately trained CNNs are combined by averaging or using a majority consensus. In this work, we propose the use of a stacked generalization framework (StackGen-Net) for combining multiplanar lesion information from 3D CNN ensembles to improve the detection of WMH lesions in 3D-FLAIR. A stacked generalization18 framework learns to combine solutions from individual CNNs in the ensemble. We systematically evaluated the performance of this framework and compared it with traditional ensemble techniques, such as averaging or majority voting, and state-of-the-art deep learning techniques.  相似文献   
2.
3.
4.
The special interest group on sensitive skin of the International Forum for the Study of Itch previously defined sensitive skin as a syndrome defined by the occurrence of unpleasant sensations (stinging, burning, pain, pruritus and tingling sensations) in response to stimuli that normally should not provoke such sensations. This additional paper focuses on the pathophysiology and the management of sensitive skin. Sensitive skin is not an immunological disorder but is related to alterations of the skin nervous system. Skin barrier abnormalities are frequently associated, but there is no cause and direct relationship. Further studies are needed to better understand the pathophysiology of sensitive skin – as well as the inducing factors. Avoidance of possible triggering factors and the use of well-tolerated cosmetics, especially those containing inhibitors of unpleasant sensations, might be suggested for patients with sensitive skin. The role of psychosocial factors, such as stress or negative expectations, might be relevant for subgroups of patients. To date, there is no clinical trial supporting the use of topical or systemic drugs in sensitive skin. The published data are not sufficient to reach a consensus on sensitive skin management. In general, patients with sensitive skin require a personalized approach, taking into account various biomedical, neural and psychosocial factors affecting sensitive skin.  相似文献   
5.
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号