首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
妇产科学   2篇
基础医学   9篇
临床医学   3篇
内科学   6篇
神经病学   11篇
外科学   1篇
药学   1篇
  2021年   1篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2000年   2篇
  1991年   2篇
  1989年   1篇
  1987年   2篇
  1982年   1篇
  1979年   3篇
  1976年   1篇
  1975年   1篇
  1967年   1篇
排序方式: 共有33条查询结果,搜索用时 31 毫秒
1.
Summary In the rat, the insomnia which follows the administration of parachlorophenylalanine (p-CPA), a serotonin synthesis inhibitor, is transiently reversed either by intra-cisternal injection of L-5-HTP or by an associated injection of 5-HTP and an L-aromatic-aciddecarboxylase inhibitor (benserazide). Histochemical, immunohistochemical and chemical investigations showed that 5-HTP administration does not lead to a detectable increase in cerebral 5-HT. These findings suggest that the restoration of sleep after p-CPA treatment could be mediated by the central action of 5-HTP.  相似文献   
2.
Retroviruses are RNA viruses that are able to synthesize a DNA copy of their genome and insert it into a chromosome of the host cell. Sequencing of different eukaryote genomes has revealed the presence of many such endogenous retroviral sequences. The mechanisms by which these retroviral sequences have colonized the genome are still unknown, and the endogenous retrovirus gypsy of Drosophila melanogaster is a powerful experimental model for deciphering this process in vivo. Gypsy is expressed in a layer of somatic cells, and then transferred into the oocyte by an unknown mechanism. This critical step is the start of the endogenization process. Moreover gypsy has been shown to have infectious properties, probably due to its envelope gene acquired from a baculovirus. Recently we have also shown that gypsy maternal transmission is reduced in the presence of the endosymbiotic bacterium Wolbachia. These studies demonstrate that gypsy is a unique and powerful model for understanding the endogenization of retroviruses.  相似文献   
3.
We demonstrated the presence of 5-hydroxytryptophan (5-HTP), the immediate precursor of serotonin (5-HT), in the rat brain tissue using a glutaraldehyde-coupled immunohistochemical technique. The immunoreactivity of 5-HTP was intensified in the colchicine-pretreated rat. The distribution of labelled cells was the same as for 5-HT-immunoreactive cells, but they were fewer in number.  相似文献   
4.
Parachlorophenylalanine, an inhibitor of tryptophan hydroxylase, induced a virtually total disappearance of serotonin-immunoreactivity in the hypothalamus of the cat. After intrahypothalamic injection of 5-hydroxytryptophan, an immediate precursor of serotonin in cats pretreated with parachlorophenylalanine, serotonin-immunoreactivity was detected in many fibers surrounding the injection site. Furthermore, when 5-hydroxytryptophan was injected with inhibitor of monoamine oxidase, a large number of small neurons immunoreactive to serotonin was identified in many discrete regions: the anterior and lateral hypothalamic areas, preoptic area, suprachiasmatic nucleus, dorsal hypothalamic area, dorsomedial nucleus, posterior hypothalamic area and nucleus of the fields of Forel. Serotonin-immunoreactivity was also evident in the thick axon bundles in the lateral hypothalamus. The distribution pattern of these cells was quite similar to that of aromatic L-amino acid decarboxylase, which catalyses the conversion of 5-hydroxytryptophan to serotonin and that of L-3,4-dihydroxyphenylalanine to dopamine. However, we failed to demonstrate serotonin-immunoreactivity in these parvocellular neurons without monoamine oxidase inhibitor. It is possible that 5-hydroxytryptophan is decarboxylated to serotonin by aromatic L-amino acid decarboxylase but rapidly degraded by monoamine oxidase-A, the enzyme which preferentially deaminates serotonin. In contrast, serotonin-immunostaining was always demonstrable after intrahypothalamic injection of 5-hydroxytryptophan without monoamine oxidase inhibitor in magnocellular neurons located in the ventrolateral posterior hypothalamus and which contain exclusively monoamine oxidase-B and histidine decarboxylase. It appears that in these cells and axons, serotonin, possibly formed by histidine decarboxylase, is not rapidly oxidized by monoamine oxidase-B. Possible roles of serotonin as a neurohormone in sleep-waking regulation and of trace amines in the brain are discussed.  相似文献   
5.
6.
Phagosomes employ lytic enzymes, cationic peptides, and reactive oxygen intermediates to eliminate invading microorganisms. The effectiveness of these microbicidal mechanisms is potentiated by the acidic pH created by H(+)-pumping vacuolar-type ATPases (V-ATPases) on the phagosomal membrane. The degree of phagosomal acidification varies greatly among neutrophils, macrophages, and dendritic cells and can be affected by diseases like cystic fibrosis. The determinants of phagosomal pH are not completely understood, but the permeability to ions that neutralize the electrogenic effect of the V-ATPase has been proposed to play a central role. When counterion conductance is limiting, generation of a large membrane potential will dominate the proton-motive force (pmf), with a proportionally diminished pH gradient. Validation of this notion requires direct measurement of the electrical potential that develops across the phagosomal membrane (Psi(Phi)). We describe a noninvasive procedure to estimate Psi(Phi) in intact cells, based on fluorescence resonance energy transfer. This approach, in combination with measurements of phagosomal pH, enabled us to calculate the pmf across phagosomes of murine macrophages and to analyze the factors that limit acidification. At steady state, Psi(Phi) averaged 27 mV (lumen positive) and was only partially dissipated by inhibition of the V-ATPase with concanamycin A. The comparatively small contribution of the potential to the pmf suggests that proton pumping is not limited by the counterion permeability, a notion that was validated independently by using ionophores. Instead, phagosomal pH stabilizes when the rate of proton pumping, which decreases gradually as the lumen acidifies, is matched by the passive leak of proton equivalents.  相似文献   
7.

Study Objectives:

It has been shown that wake (W) and slow wave sleep (SWS) modulate synaptic transmission in neocortical projections. However the impact of paradoxical sleep (PS) quantities on synaptic transmission remains unknown. We examined whether PS modulated the excitatory transmission and expression of glutamate receptor subtypes and phosphorylated extracellular signal-regulated kinases (p-ERK1/2).

Design:

PS deprivation (PSD) was carried out with the multiple platforms method on adult male Sprague-Dawley rats. LTP, late-LTP, and synaptic transmission were studied in the dorsal and ventral hippocampus of controls, 75-h PSD and 150-min PS rebound (PSR). GluR1 and NR1 protein and mRNA expression were evaluated by western blot and real-time PCR. P-ERK1/2 level was quantified by western blot and immunohistochemistry.

Measurement and Results:

PSD decreased synaptic transmission and LTP selectively in dorsal CA1 and PSR rescued these deficits. PSD-induced synaptic modifications in CA1 were associated with a decrease in GluR1, NR1, and p-ERK1/2 levels in dorsal CA1 without change in GluR1 and NR1 mRNA expression. Regression analysis shows that LTP is positively correlated with both PS quantities and SWS episodes duration, whereas synaptic transmission and late-LTP are positively correlated with PS quantities and negatively correlated with SWS quantities.

Conclusions:

These findings unveil previously unrecognized roles of PSD on synaptic transmission and LTP in the dorsal, but not in the ventral, hippocampus. The fact that the decrease in protein expression of GluR1 and NR1 was not associated with a change in mRNA expression of these receptors suggests that a sleep-induced modulation of translational mechanisms occurs in dorsal CA1.

Citation:

Ravassard P; Pachoud B; Comte JC; Mejia-Perez C; Scoté-Blachon C; Gay N; Claustrat B; Touret M; Luppi PH; Salin PA. Paradoxical (REM) sleep deprivation causes a large and rapidly reversible decrease in long-term potentiation, synaptic transmission, glutamate receptor protein levels, and ERK/MAPK activation in the dorsal hippocampus. SLEEP 2009;32(2):227–240.  相似文献   
8.
BACKGROUND: Errors in the judgement of puncture level during neuraxial anaesthesia can lead to significant complications. The aim of this study was to assess, in obstetric anaesthesia, the accuracy of clinical determination of the lumbar spinal interspace level, using surface ultrasound imaging as control. METHODS: At the anaesthesia follow-up visit, women who had received lumbar neuraxial anaesthesia during labour were prospectively included. The intervertebral level of needle insertion, located by the needle scar position, was identified by ultrasonography and compared with the clinical level reported on the chart by the anaesthetist who performed the block. RESULTS: Ninety-nine women were studied. The clinical puncture level was accurate in 36.4% of patients. Ultrasound examination showed the puncture level to be more cephalad than the level noted in the anaesthetic record in almost 50% of patients. In 15% of patients, the puncture level was more caudad than the anaesthetist had assessed. Factors including type of anaesthesia, indication, time period, level of anaesthetic experience, BMI, and spinal pathology did not seem to influence the frequency of errors. CONCLUSIONS: The observed differences between clinical and ultrasonic identification of spinal puncture level highlight the potential for serious complications associated with the performance of neuraxial blocks above the spinous process of L3 in the parturient. With the increase in popularity of techniques involving puncture of the dura mater for labour anaesthesia, we feel that awareness of this risk is important.  相似文献   
9.
A mutation of the iron transporter Nramp2 (DMT1, Slc11a2) causes microcytic anemia in mk mice and in Belgrade rats by impairing iron absorption in the duodenum and in erythroid cells, causing severe iron deficiency. Both mk and Belgrade animals display a glycine-to-arginine substitution at position 185 (G185R) in the fourth predicted transmembrane domain of Nramp2. To study the molecular basis for the loss of function of Nramp2(G185R), we established cell lines stably expressing extracellularly tagged versions of wild-type (WT) or mutated transporters. Like WT Nramp2, the G185R mutant was able to reach the plasmalemma and endosomal compartments, but with reduced efficiency. Instead, a large fraction of Nramp2(G185R) was detected in the endoplasmic reticulum, where it was unstable and was rapidly degraded by a proteasome-dependent mechanism. Moreover, the stability of the mutant protein that reached the plasma membrane was greatly reduced, further diminishing its surface density at steady state. Last, the specific metal transport activity of plasmalemmal Nramp2(G185R) was found to be significantly depressed, compared with its WT counterpart. Thus, a singlepoint mutation results in multiple biosynthetic and functional defects that combine to produce the impaired iron deficiency that results in microcytic anemia.  相似文献   
10.
A fluorescence histochemical study of the pontine catecholaminergic (CA) neurons of two inbred strains of mice, BALB/c (C) and C57BL/6 (B6) and their F1 hybrids revealed that the total number of thefluorescent cells in the C strain was 38% lower than that of the B6 strain. In F1 hybrids, the total number of neurons was not statistically different from that of the B6 parent. During the development from birth to adulthood, the same quantitative differences between strains were observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号