首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   19篇
基础医学   13篇
临床医学   30篇
内科学   18篇
神经病学   21篇
特种医学   51篇
外科学   13篇
预防医学   1篇
药学   15篇
肿瘤学   22篇
  2023年   2篇
  2022年   3篇
  2020年   6篇
  2019年   7篇
  2018年   10篇
  2017年   7篇
  2016年   6篇
  2015年   6篇
  2014年   5篇
  2013年   6篇
  2012年   9篇
  2011年   15篇
  2010年   4篇
  2009年   6篇
  2008年   14篇
  2007年   10篇
  2006年   5篇
  2005年   15篇
  2004年   7篇
  2003年   8篇
  2002年   9篇
  2001年   10篇
  2000年   4篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1978年   1篇
  1976年   1篇
  1949年   1篇
排序方式: 共有184条查询结果,搜索用时 46 毫秒
1.
The sympathetic nervous system of the heart plays a key role in the pathophysiology of various cardiac diseases. Small-animal models are valuable for obtaining further insight into mechanisms of cardiac disease and therapy. To determine the translational potential of cardiac neuronal imaging from rodents to humans, we characterized the rat sympathetic nervous system using 3 radiotracers that reflect different subcellular mechanisms: (11)C-meta-hydroxyephedrine (HED), a tracer of neuronal transport showing stable uptake and no washout in healthy humans; (11)C-phenylephrine (PHEN), a tracer of vesicular leakage and intraneuronal metabolic degradation with initial uptake and subsequent washout in humans; and (11)C-epinephrine (EPI), a tracer of vesicular storage with stable uptake and no washout in humans. METHODS: We used a small-animal PET system to study healthy male Wistar rats at baseline, after desipramine (DMI) pretreatment (DMI block), and with DMI injection 15 min after tracer delivery (DMI chase). The rats were kept under general isoflurane anesthesia while dynamic emission scans of the heart were recorded for 60 min after radiotracer injection. A myocardial retention index was determined by normalizing uptake at 40 min to the integral under the arterial input curve. Washout rates were determined by monoexponential fitting of myocardial time-activity curves. RESULTS: At baseline, HED showed high myocardial uptake and sustained retention, EPI showed moderate uptake and significant biphasic washout, and PHEN showed moderate uptake and monoexponential washout. The average (+/- SD) left ventricular retention index for HED, PHEN, and EPI was 7.38% +/- 0.82%/min, 3.43% +/- 0.45%/min, and 4.24% +/- 0.59%/min, respectively; the washout rate for HED, PHEN, and EPI was 0.13% +/- 0.23%/min, 1.13% +/- 0.35%/min, and 0.50% +/- 0.24%/min, respectively. The DMI chase resulted in increased washout only for HED. DMI block decreased myocardial uptake of all tracers by less than 90%. CONCLUSION: Kinetic profiles of HED in the rat myocardium were similar to those of HED in humans, suggesting comparable neuronal transport density. Unlike in humans, however, significant washout of EPI and faster washout of PHEN were encountered, consistent with high intraneuronal metabolic activity, high catecholamine turnover, and reduced vesicular storage. This evidence of increased neuronal activity in rodents has implications for translational studies of cardiac neuronal biology in humans.  相似文献   
2.
Massive immune hemolysis due to passenger lymphocyte-derived anti-D has not been reported in renal transplantation. A 50-year-old (B-positive) male received a dual deceased-donor kidney transplant (B-negative) for diabetic renal failure. Two weeks post-transplant, the patient developed severe hemolytic anemia. The donor anti-D titer was 1:8. The recipient anti-D titer (zero pre-transplant) increased from 1:4 to 1:16 over 4 days. Rapid hemolysis caused severe anemia, minimum Hb = 4.2 g/dL, while selectively lysing the patient's autologous red cells during this time. The hemolytic anemia did not impair the allografts and subsided without monoclonal B-cell pharmacotherapy or apheresis. The anti-D titer decreased to barely detectable levels at four months and had cleared when checked 2 years post-transplant. Transfusion support subsided after two months. If complications of anemia can be avoided, the deleterious effects of hemolysis may be well tolerated by renal allografts using antigen negative transfusion alone.  相似文献   
3.
PURPOSE: Prostate-specific membrane antigen (PSMA) is a cell surface protein that is overexpressed in prostate cancer, including hormone-refractory and metastatic disease. Our goal in this study was to develop a series of PSMA-based imaging agents for clinical use. EXPERIMENTAL DESIGN: We have synthesized and evaluated the in vivo biodistribution of two radiolabeled urea derivatives that have high affinity for PSMA in severe combined immunodeficient mice harboring MCF-7 (breast, PSMA-negative), PC-3 (prostate, PSMA-negative), and LNCaP (prostate, PSMA-positive) xenografts. Radiopharmaceutical binding selectivity and tumor uptake were also evaluated in vivo using dedicated small animal positron emission tomography, single photon emission computed tomography, and gamma scintigraphic imaging devices. N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-S-[(11)C]methyl-L-cysteine ([(11)C]DCMC K(i), 3.1 nmol/L) and N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-S-3-[(125)I]iodo-L-tyrosine ([(125)C]DCIT K(i), 1.5 nmol/L) were synthesized using [(11)C]CH(3)I and with [(125)I]NaI/Iodogen, respectively.RESULTS: At 30 minutes postinjection, [(11)C]DCMC and [(125)I]DCIT showed tumor/muscle ratios of 10.8 and 4.7, respectively, with clear delineation of LNCaP-derived tumors on imaging. MCF-7- and PC-3-derived tumors showed significantly less uptake of [(11)C]DCMC or [(125)I]DCIT. CONCLUSION: These results show the feasibility of imaging PSMA-positive prostate cancer using low molecular weight agents.  相似文献   
4.
The authors define molecular imaging, according to the Society of Nuclear Medicine and Molecular Imaging, as the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in humans and other living systems. Although practiced for many years clinically in nuclear medicine, expansion to other imaging modalities began roughly 25 years ago and has accelerated since. That acceleration derives from the continual appearance of new and highly relevant animal models of human disease, increasingly sensitive imaging devices, high-throughput methods to discover and optimize affinity agents to key cellular targets, new ways to manipulate genetic material, and expanded use of cloud computing. Greater interest by scientists in allied fields, such as chemistry, biomedical engineering, and immunology, as well as increased attention by the pharmaceutical industry, have likewise contributed to the boom in activity in recent years. Whereas researchers and clinicians have applied molecular imaging to a variety of physiologic processes and disease states, here, the authors focus on oncology, arguably where it has made its greatest impact. The main purpose of imaging in oncology is early detection to enable interception if not prevention of full-blown disease, such as the appearance of metastases. Because biochemical changes occur before changes in anatomy, molecular imaging—particularly when combined with liquid biopsy for screening purposes—promises especially early localization of disease for optimum management. Here, the authors introduce the ways and indications in which molecular imaging can be undertaken, the tools used and under development, and near-term challenges and opportunities in oncology.  相似文献   
5.
Annals of Nuclear Medicine - Complete surgical resection of metastatic sites has been shown to prolong survival in select patients with oligometastatic RCC. This treatment strategy is dependent...  相似文献   
6.
In normal‐hearing listeners, localization of auditory speech involves stimulus processing in the postero‐dorsal pathway of the auditory system. In quiet environments, bilateral cochlear implant (CI) users show high speech recognition performance, but localization of auditory speech is poor, especially when discriminating stimuli from the same hemifield. Whether this difficulty relates to the inability of the auditory system to translate binaural electrical cues into neural signals, or to a functional reorganization of auditory cortical pathways following long periods of binaural deprivation is unknown. In this electroencephalography study, we examined the processing of auditory syllables in postlingually deaf adults with bilateral CIs and in normal‐hearing adults. Participants were instructed to either recognize (“recognition” task) or localize (“localization” task) the syllables. The analysis focused on event‐related potentials and oscillatory brain responses. N1 amplitudes in CI users were larger in the localization compared with recognition task, suggesting an enhanced stimulus processing effort in the localization task. Linear beamforming of oscillatory activity in CI users revealed stronger suppression of beta‐band activity after 200 ms in the postero‐dorsal auditory pathway for the localization compared with the recognition task. In normal‐hearing adults, effects for longer latency event‐related potentials were found, but no effects were observed for N1 amplitudes or beta‐band responses. Our study suggests that difficulties in speech localization in bilateral CI users are not reflected in a functional reorganization of cortical auditory pathways. New signal processing strategies of cochlear devices preserving unambiguous binaural cues may improve auditory localization performance in bilateral CI users. Hum Brain Mapp 35:3107–3121, 2014. © 2013 Wiley Periodicals, Inc .  相似文献   
7.
Purpose

In this study, we aimed to quantitatively investigate the biodistribution of [18F]DCFPyL in patients with prostate cancer (PCa) and to determine whether uptake in normal organs correlates with an increase in tumor burden.

Procedures

Fifty patients who had been imaged with [18F]DCFPyL positron emission tomography/computed tomography (PET/CT) were retrospectively included in this study. Forty of 50 (80 %) demonstrated radiotracer uptake on [18F]DCFPyL PET/CT compatible with sites of PCa. Volumes of interests (VOIs) were set on normal organs (lacrimal glands, parotid glands, submandibular glands, liver, spleen, and kidneys) and on tumor lesions. Mean standardized uptake values corrected to lean body mass (SULmean) and mean standardized uptake values corrected to body weight (SUVmean) for normal organs were assessed. For the entire tumor burden, SULmean/max, SUVmean, tumor volume (TV), and the total activity in the VOI were obtained using tumor segmentation. A Spearman’s rank correlation coefficient was used to investigate correlations between normal organ uptake and tumor burden.

Results

There was no significant correlation between TV with the vast majority of the investigated organs (lacrimal glands, parotid glands, submandibular glands, spleen, and liver). Only the kidney showed significant correlation: With an isocontour threshold at 50 %, left kidney uptake parameters correlated significantly with TV (SUVmean, ρ?=???0.214 and SULmean, ρ?=???0.176, p?<?0.05, respectively).

Conclusions

Only a minimal sink effect with high tumor burden in patients imaged with [18F]DCFPyL was observed. Other factors, such as a high intra-patient variability of normal organ uptake, may be a much more important consideration for personalized dosimetry with PSMA-targeted therapeutic agents structurally related to [18F]DCFPyL than the tumor burden.

  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号