首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
临床医学   5篇
  2022年   2篇
  2019年   1篇
  2018年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The pollution of the water environment by industrial effluents is an ongoing challenge due to the rate of industrialisation and globalisation. Photoelectrocatalysis (PEC), an electrochemical advanced oxidation process, has proven to be an effective method for removing organics from wastewater. Photoelectrocatalysis is environmentally benign, cost-effective and easy to operate. In this present review, we examine the recent progress in the removal of rhodamine B dye, a common constituent of textile effluent released into the environment, through photoelectrocatalytic degradation. We present a detailed discussion on the use of different kinds of unmodified and modified photoanodes that have been explored for the photoelectrocatalytic removal of this dye. More importantly, discussions are presented on the mechanisms and kinetics of the degradation of rhodamine B dye using these photoanodes. Hence, this review will be beneficial for researchers in developing future projects in the area of wastewater treatments through photoelectrocatalysis.

The pollution of the water environment by industrial effluents is an ongoing challenge due to the rate of industrialisation and globalisation.  相似文献   
2.
A novel Pd–ZnO-expanded graphite (EG) photoelectrode was constructed from a Pd–ZnO-EG nanocomposite synthesised by a hydrothermal method and characterised using various techniques such as X-ray diffractometry (XRD), Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy, nitrogen adsorption–desorption analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Cyclic voltammetry and photocurrent response measurements were also carried out on the electrode. The Pd–ZnO-EG electrode was employed in the photoelectrocatalytic removal of 4-nitrophenol as a target water pollutant at a neutral pH and with a current density of 7 mA cm−2. Optical studies revealed that the Pd–ZnO-EG absorbed strongly in the visible light region. The Pd–ZnO-EG electrode showed improved photoelectrocatalytic activity in relation to ZnO-EG and EG electrodes for the removal of the 4-nitrophenol. The photocurrent responses showed that the Pd–ZnO-EG nanocomposite electrode could be employed as a good photoelectrode for photoelectrocatalytic processes and environmental remediation such as treatment of industrial waste waters. Density functional theory method was used to model the oxidative degradation of 4-nitrophenol by the hydroxyl radical which generates hydroquinone, benzoquinone, 4-nitrocatechol, 4-nitroresorcinol and the opening of the 4-nitrophenol ring. Furthermore, the hydroxyl radical is regenerated and can further oxidise the ring structure and initiate a new degradation process.

Band diagram for the mechanism of charge transfer involved in the photo-electrocatalytic degradation activity of Pd-ZnO-expanded graphite (EG) photoanode on 4-nitrophenol removal.  相似文献   
3.
The sonoelectrochemical (SEC) oxidation of sulfamethoxazole (SMX) in simulated and actual wastewater on FTO/BaZr(0.1)Ti(0.9)O3, FTO/BaZr(0.05)Ti(0.95)O3 and FTO/BaTiO3 electrodes is hereby presented. Electrodes from piezo-polarizable BaZr(0.1)Ti(0.9)O3, BaZr(0.05)Ti(0.95)O3, and BaTiO3 materials were prepared by immobilizing these materials on fluorine-doped tin dioxide (FTO) glass. Electrochemical characterization performed on the electrodes using chronoamperometry and electrochemical impedance spectroscopy techniques revealed that the FTO/BaZr(0.1)Ti(0.9)O3 anode displayed the highest sonocurrent density response of 2.33 mA cm−2 and the lowest charge transfer resistance of 57 Ω. Compared to other electrodes, these responses signaled a superior mass transfer on the FTO/BaZr(0.1)Ti(0.9)O3 anode occasioned by an acoustic streaming effect. Moreover, a degradation efficiency of 86.16% (in simulated wastewater), and total organic carbon (TOC) removal efficiency of 63.16% (in simulated wastewater) and 41.47% (in actual wastewater) were obtained upon applying the FTO/BaZr(0.1)Ti(0.9)O3 electrode for SEC oxidation of SMX. The piezo-polarizable impact of the FTO/BaZr(0.1)Ti(0.9)O3 electrode was further established by the higher rate constant obtained for the FTO/BaZr(0.1)Ti(0.9)O3 electrode as compared to the other electrodes during SEC oxidation of SMX under optimum operational conditions. The piezo-potential effect displayed by the FTO/BaZr(0.1)Ti(0.9)O3 electrode can be said to have impacted the generation of reactive species, with hydroxyl radicals playing a predominant role in the degradation of SMX in the SEC system. Additionally, a positive synergistic index obtained for the electrode revealed that the piezo-polarization effect of the FTO/BaZr(0.1)Ti(0.9)O3 electrode activated during sonocatalysis combined with the electrochemical oxidation process during SEC oxidation can be advantageous for the decomposition of pharmaceuticals and other organic pollutants in water.

Piezo-polarized charges are generated on piezoelectric materials via the ultrasound effect. Positive synergy is achieved through sonolysis and electrochemical oxidation. Impressive degradation efficiency of sulfamethoxazole on FTO/BaZr(0.1)Ti(0.9)O3 electrode is observed.  相似文献   
4.
A novel photoanode consisting of an exfoliated graphite–BiVO4/ZnO heterostructured nanocomposite was fabricated. The material was characterised with scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). Photoelectrochemical studies were carried out with cyclic/linear sweep voltammetry and chronoamperometry. The solar photoelectrochemical properties of the heterojunction photoanode were investigated through the degradation of rhodamine B in water. The results revealed that the nanoparticles of BiVO4 and ZnO were well entrapped within the interlayers of the exfoliated graphite (EG) sheets. Improved charge separation was achieved in the EG–BiVO4/ZnO composite electrode which resulted in superior photoelectrochemical performance than individual BiVO4 and ZnO electrodes. A higher degradation efficiency of 91% of rhodamine B was recorded using the composite electrode with the application of 10 mA cm−2 current density and a solution pH of 7. The highest total organic carbon removal of 74% was also recorded with the EG–BiVO4/ZnO. Data from scavenger studies were used to support the proposed mechanism of degradation. The electrode has high stability and reusability and hence lends itself to applications in photoelectrocatalysis, especially in water treatment.

Band alignment between ZnO and BiVO4 on exfoliated graphite (EG) support.  相似文献   
5.
A novel electrochemical immunosensor for the quantification of α-feto protein (AFP) using a nanocomposite of manganese(iv) oxide nanorods (MnO2NRs) and gold nanoparticles (AuNPs) as the immobilisation layer is presented. The MnO2NRs was synthesised using a hydrothermal method and AuNPs were electrodeposited on a glassy carbon electrode surface. The MnO2NRs were characterised with scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and X-ray powder diffraction (XRD). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterise the immunosensor at each stage of the biosensor preparation. The MnO2 nanorods and AuNPs were applied as the immobilisation layer to efficiently capture the antibodies and amplify the electrochemical signal. Under optimised conditions, the fabricated immunosensor was utilised for the quantification of AFP with a wide dynamic range of 0.005 to 500 ng mL−1 and detection limits of 0.00276 ng mL−1 and 0.00172 ng mL−1 (S/N = 3) were obtained from square wave anodic stripping voltammetry and EIS respectively. The nanocomposite modifier enhanced the immunosensor performance. More so, this label-free immunosensor possesses good stability over a period of two weeks when stored at 4 °C and was selective in the presence of some interfering species.

A novel electrochemical immunosensor for the quantification of α-feto protein (AFP) using a nanocomposite of manganese(iv) oxide nanorods (MnO2NRs) and gold nanoparticles (AuNPs) as the immobilisation layer is presented.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号