首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
内科学   1篇
预防医学   1篇
药学   2篇
  2014年   1篇
  2010年   2篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.

Background

Cadmium (Cd) is a carcinogenic heavy metal of environmental concern. Exposure to both Cd and carcinogenic organic compounds, such as polycyclic aromatic hydrocarbons or aromatic amines (AAs), is a common environmental problem. Human arylamine N-acetyltransferases (NATs) are xenobiotic-metabolizing enzymes that play a key role in the biotransformation of AA carcinogens. Changes in NAT activity have long been associated with variations in susceptibility to different cancers in relation with exposure to certain AAs.

Objective

We explored the possible interactions between Cd and the NAT-dependent biotransformation of carcinogenic AAs.

Methods

We exposed purified enzymes, lung epithelial cells, and mouse models to Cd and subsequently analyzed NAT-dependent metabolism of AAs.

Results

We found that Cd, at biologically relevant concentrations, impairs the NAT-dependent acetylation of carcinogenic AAs such as 2-aminofluorene (2-AF) in lung epithelial cells. NAT activity was strongly impaired in the tissues of mice exposed to Cd. Accordingly, mice exposed to Cd and 2-AF displayed altered in vivo toxicokinetics with a significant decrease (~ 50%) in acetylated 2-AF in plasma. We found that human NAT1 was rapidly and irreversibly inhibited by Cd [median inhibitory concentration (IC50) ≈ 55 nM; rate inhibition constant (kinact) = 5 × 104 M−1 · sec−1], with results of acetyl coenzyme A (acetyl-CoA) protection assays indicating that Cd-mediated inhibition was due to the reaction of metal with the active-site cysteine residue of the enzyme. We found similar results for human NAT2, although this isoform was less sensitive to inactivation (IC50 ≈ 1 μM; kinact = 1 × 104 M−1 · sec−1).

Conclusions

Our data suggest that Cd can alter the metabolism of carcinogenic AAs through the impairment of the NAT-dependent pathway, which may have important toxicological consequences.  相似文献   
2.

Background

Common autoimmune disorders tend to coexist in the same subjects and to cluster in families.

Methods

We performed a cross-sectional multicenter study of 3286 Caucasian subjects (2791 with Graves' disease; 495 with Hashimoto's thyroiditis) attending UK hospital thyroid clinics to quantify the prevalence of coexisting autoimmune disorders. All subjects completed a structured questionnaire seeking a personal and parental history of common autoimmune disorders, as well as a history of hyperthyroidism or hypothyroidism among parents.

Results

The frequency of another autoimmune disorder was 9.67% in Graves' disease and 14.3% in Hashimoto's thyroiditis index cases (P = .005). Rheumatoid arthritis was the most common coexisting autoimmune disorder (found in 3.15% of Graves' disease and 4.24% of Hashimoto's thyroiditis cases). Relative risks of almost all other autoimmune diseases in Graves' disease or Hashimoto's thyroiditis were significantly increased (>10 for pernicious anemia, systemic lupus erythematosus, Addison's disease, celiac disease, and vitiligo). There was relative “clustering” of Graves' disease in the index case with parental hyperthyroidism and of Hashimoto's thyroiditis in the index case with parental hypothyroidism. Relative risks for most other coexisting autoimmune disorders were markedly increased among parents of index cases.

Conclusion

This is one of the largest studies to date to quantify the risk of diagnosis of coexisting autoimmune diseases in more than 3000 index cases with well-characterized Graves' disease or Hashimoto's thyroiditis. These risks highlight the importance of screening for other autoimmune diagnoses if subjects with autoimmune thyroid disease present with new or nonspecific symptoms.  相似文献   
3.
Recently a novel class of chiral stationary phases (CSPs) based on cyclofructan (CF) has been developed. Cyclofructans are cyclic oligosaccharides that possess a crown ether core and pendent fructofuranose moieties. Herein, we evaluate the applicability of these novel CSPs for the enantiomeric separation of chiral illicit drugs and controlled substances directly without any derivatization. A set of 20 racemic compounds were used to evaluate these columns including 8 primary amines, 5 secondary amines, and 7 tertiary amines. Of the new cyclofructan‐based LARIHC columns, 14 enantiomeric separations were obtained including 7 baseline and 7 partial separations. The LARIHC CF6‐P column proved to be the most useful in separating illicit drugs and controlled substances accounting for 11 of the 14 optimized separations. The polar organic mode containing small amounts of methanol in acetonitrile was the most useful solvent system for the LARIHC CF6‐P CSP. Furthermore, the LARIHC CF7‐DMP CSP proved to be valuable for the separation of the tested chiral drugs resulting in four of the optimized enantiomeric separations, whereas the CF6‐RN did not yield any optimum separations. The broad selectivity of the LARIHC CF7‐DMP CSP is evident as it separated primary, secondary and tertiary amine containing chiral drugs. The compounds that were partially or un‐separated using the cyclofructan based columns were screened with a Cyclobond I 2000 RSP column. This CSP provided three baseline and six partial separations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
4.
Arylamine N-acetyltransferase 1 (NAT1) is a phase II xenobiotic-metabolizing enzyme that plays an important role in the biotransformation of aromatic drugs and carcinogens. NAT1 activity has long been associated with susceptibility to various cancers. Evidence for a role of NAT1 in malignant progression has also been obtained, particularly for breast and prostate cancer. Cisplatin is widely used in chemotherapy against human cancers, and it is thought to act principally by forming DNA adducts. However, recent studies have suggested that some of the pharmacological and/or toxicological effects of cisplatin may be due to the direct targeting and inhibition of certain cellular enzymes. We show here that the exposure of breast cancer cells, known to express functional NAT1 enzyme, to therapeutically relevant concentrations of cisplatin impairs the catalytic activity of endogenous NAT1. Endogenous NAT1 was also found to be inactivated, in vivo, in the tissues of mice treated with cisplatin. Mechanistic studies with purified human NAT1 indicated that this inhibition resulted from the irreversible formation of a cisplatin adduct with the active-site cysteine residue of the enzyme. Kinetic studies suggested that NAT1 interacts rapidly with cisplatin, with a second-order rate inhibition constant of 700 M(-1) min(-1). This rate constant is one the highest ever reported for the reaction of cisplatin with a biological macromolecule. Few enzymes have been clearly shown to be inactivated by cisplatin. We provide here molecular and cellular evidence suggesting that NAT1 is one of the targets of cisplatin in cells.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号