首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
临床医学   1篇
  2019年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
NiMoS2 nanoparticles supported on carbon, synthesized by a microemulsion method were used as a nanocatalyst for hydrodeoxygenation (HDO) of a lignin model compound – guaiacol. Two types of carbon supports – mesoporous carbon (CMK-3) and activated carbon (AC) with a predominantly microporous structure, were studied to investigate the role of porosity and nature of the porous structure in catalyst activity. The activity of NiMoS2/AC resulted in the complete guaiacol conversion at 13 h of reaction time to produce phenol (31.5 mol%) and cyclohexane (35.7 mol%) as the two main products. Contrastingly, NiMoS2/CMK-3 needed a much lesser reaction time (6 h) to attain a similar conversion of guaiacol but gave different selectivities of phenol (25 mol%) and cyclohexane (55.5 mol%). Increased cyclohexane production with NiMoS2/CMK-3 implied better deoxygenation of MoS2 and enhanced hydrogenation capacity of Ni since phenol is a partially deoxygenated product of guaiacol while cyclohexane is a completely deoxygenated and hydrogenated product. The superior catalytic activity and deoxygenating behavior of NiMoS2/CMK-3 catalysts could be attributed to the organized mesoporosity of the CMK-3 support in relation to the improved active phase distribution and access to active sites that facilitate the conversion of the reaction''s product. Recyclability study implied NiMoS2/CMK-3 was more stable without significant changes in the catalytic activity even after three reaction cycles.

NiMoS2 nanoparticles supported on carbon, synthesized by a microemulsion method were used as a nanocatalyst for hydrodeoxygenation (HDO) of a lignin model compound – guaiacol.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号