首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
临床医学   2篇
药学   1篇
  2019年   1篇
  2018年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Advances in the synthesis and processing of graphene-based materials have presented the opportunity to design novel lithium-ion battery (LIB) anode materials that can meet the power requirements of next-generation power devices. In this work, a poly(methacrylic acid) (PMAA)-induced self-assembly process was used to design super-mesoporous Fe3O4 and reduced-graphene-oxide (Fe3O4@RGO) anode materials. We demonstrate the relationship between the media pH and Fe3O4@RGO nanostructure, in terms of dispersion state of PMAA-stabilized Fe3O4@GO sheets at different surrounding pH values, and porosity of the resulted Fe3O4@RGO anode. The anode shows a high surface area of 338.8 m2 g−1 with a large amount of 10–40 nm mesopores, which facilitates the kinetics of Li-ions and electrons, and improves electrode durability. As a result, Fe3O4@RGO delivers high specific-charge capacities of 740 mA h g−1 to 200 mA h g−1 at various current densities of 0.5 A g−1 to 10 A g−1, and an excellent capacity-retention capability even after long-term charge–discharge cycles. The PMAA-induced assembly method addresses the issue of poor dispersion of Fe3O4-coated graphene materials—which is a major impediment in the synthesis process—and provides a facile synthetic pathway for depositing Fe3O4 and other metal oxide nanoparticles on highly porous RGO.

Advances in the synthesis and processing of graphene-based materials have presented the opportunity to design novel lithium-ion battery (LIB) anode materials that can meet the power requirements of next-generation power devices.  相似文献   
2.
Numerous proteases, such as matrix metalloproteinases (MMPs), cathepsins (CTS), and urokinase plasminogen activator (UpA), are dysfunctional (that is, over- or under-expressed) in solid tumors, when compared to healthy human subjects. This offers the opportunity to detect early tumors by liquid biopsies. This approach is of particular advantage for the early detection of pancreatic cancer, which is a “silent killer”. We have developed fluorescence nanobiosensors for ultrasensitive (sub-femtomolar) arginase and protease detection, consisting of water-dispersible Fe/Fe3O4 core/shell nanoparticles and two tethered fluorescent dyes: TCPP (Tetrakis(4-carboxyphenyl)porphyrin) and cyanine 5.5. Upon posttranslational modification or enzymatic cleavage, the fluorescence of TCPP increases, which enables the detection of proteases at sub-femtomolar activities utilizing conventional plate readers. We have identified an enzymatic signature for the detection of pancreatic adenocarcinomas in serum, consisting of arginase, matrix metalloproteinase-1, -3, and -?9, cathepsin-B and -E, urokinase plasminogen activator, and neutrophil elastase, which is a potential game-changer.  相似文献   
3.
The structure of novel binary nanosponges consisting of (cholesterol-(K/D)nDEVDGC)3-trimaleimide units possessing a trigonal maleimide linker, to which either lysine (K)20 or aspartic acid (D)20 are tethered, has been elucidated by means of TEM. A high degree of agreement between these findings and structure predictions through explicit solvent and then coarse-grained molecular dynamics (MD) simulations has been found. Based on the nanosponges'' structure and dynamics, caspase-6 mediated release of the model drug 5(6)-carboxyfluorescein has been demonstrated. Furthermore, the binary (DK20) nanosponges have been found to be virtually non-toxic in cultures of neural progenitor cells. It is of a special importance for the future development of cell-based therapies that DK20 nanosponges were taken up efficiently by leucocytes (WBC) in peripheral blood within 3 h of exposure. The percentage of live cells among the WBC was not significantly decreased by the DK20 nanosponges. In contrast to stem cell or leucocyte cell cultures, which have to be matched to the patient, autologous cells are optimal for cell-mediated therapy. Therefore, the nanosponges hold great promise for effective cell-based tumor targeting.

Nanosponges for drug delivery.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号