首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   1篇
临床医学   2篇
外科学   4篇
药学   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Background: Anesthetic preconditioning (APC) with sevoflurane reduces myocardial ischemia-reperfusion injury. The authors tested whether two brief exposures to sevoflurane would lead to a better preconditioning state than would a single longer exposure and whether dual exposure to a lower (L) concentration of sevoflurane would achieve an outcome similar to that associated with a single exposure to a higher (H) concentration.

Methods: Langendorff-prepared guinea pig hearts were exposed to 0.4 mm sevoflurane once for 15 min (H1-15; n = 8) or 0.4 mm (H2-5; n = 8) or 0.2 mm sevoflurane (L2-5; n = 8) twice for 5 min, with a 5-min washout period interspersed. Sevoflurane was then washed out for 20 min before 30 min of global no-flow ischemia and 120 min of reperfusion. Control hearts (n = 8) were not subjected to APC. Left ventricular pressure was measured isovolumetrically. Ventricular infarct size was determined by tetrazolium staining and cumulative planimetry. Values are expressed as mean +/- SD.

Results: The authors found a better functional return and a lesser percentage of infarction on reperfusion in H2-5 (28 +/- 9%) than in H1-15 (36 +/- 8%; P < 0.05), L2-5 (43 +/- 6%; P < 0.05), or control hearts (52 +/- 7%; P < 0.05).  相似文献   

2.
OBJECTIVES: Cardiac ischemia-reperfusion activates Na(+)/H(+) exchange; excess Na(+) and the resulting Ca(2+) overload, through reverse Na(+)/Ca(2+) exchange, cause cellular injury and cardiac dysfunction. We postulated that inhibiting the Na(+)/H(+) isoform-1 exchanger would add to the protection of hearts after long-term cold storage in acidic cardioplegic solution. METHODS: Guinea pig hearts were isolated and perfused at 37 degrees C with Krebs-Ringer's solution (KRS) and then switched to an acidic St. Thomas solution (STS) at 25 degrees C. Perfusion was stopped at 10 degrees C, and hearts were stored for 6 hours in STS at 3.4 degrees C. On reperfusion to 25 degrees C, hearts were perfused with KRS for 60 minutes. Hearts were divided into 4 groups: sham control (SHAM); eniporide (EPR, EMD96785) IV, 1 mg/kg given IV over 15 minutes before heart isolation; EPR intracoronary, 1 micromol/liter in STS given intracoronary after heart isolation; and EPR IV and intracoronary. RESULTS: Values at 60 minutes reperfusion (the percentage of control [100%] before cold storage) are given, respectively, for EPR IV, EPR intracoronary, and EPR IV and intracoronary vs drug-free SHAM (SEM, *p < 0.05 vs SHAM): 72% +/- 3%*, 65% +/- 3%*, and 81% +/- 2%* vs 55% +/- 3% for left ventricular pressure; 94% +/- 3%*, 96% +/- 5%*, and 102% +/- 2%* vs 81% +/- 3% for coronary flow; 60% +/- 2%, 58% +/- 3%, and 74%* +/- 3% vs 58% +/- 4% for cardiac efficiency; 106% +/- 2%*, 108% +/- 3%*, and 107% +/- 2%* vs 116% +/- 4% for percentage of O(2) extraction. Infarct size as percentage of ventricular weight was 20% +/- 3%*, 31% +/- 3%, and 6% +/- 2%* vs 35% +/- 3% (SHAM) after 60 minutes of reperfusion. CONCLUSIONS: Na(+)/H(+) isoform-1 exchanger inhibition, particularly if given IV before storage and intracoronary during cooling and rewarming, adds to the protection of cardioplegic solutions.  相似文献   
3.
We reported that the combination of reactive oxygen species (ROS) quenchers Mn(III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), catalase, and glutathione (MCG) given before 2 hours cold ischemia better protected cardiac mitochondria against cold ischemia and warm reperfusion (IR)-induced damage than MnTBAP alone. Here, we hypothesize that high K(+) cardioplegia (CP) plus MCG would provide added protection of mitochondrial bioenergetics and cardiac function against IR injury. Using fluorescence spectrophotometry, we monitored redox balance, ie reduced nicotinamide adenine dinucleotide and flavin adenine dinucleotide (NADH/FAD), superoxide (O(2) (?-)), and mitochondrial Ca(2+) (m[Ca(2+)]) in the left ventricular free wall. Guinea pig isolated hearts were perfused with either Krebs Ringer's (KR) solution, CP, or CP + MCG, before and during 27°C perfusion followed immediately by 2 hours of global ischemia at 27°C. Drugs were washed out with KR at the onset of 2 hours 37°C reperfusion. After 120 minutes warm reperfusion, myocardial infarction was lowest in the CP + MCG group and highest in the KR group. Developed left ventricular pressure recovery was similar in CP and CP + MCG and was better than in the KR group. O(2) (?-), m[Ca(2+)], and NADH/FAD were significantly different between the treatment and KR groups. O(2) (?-) was lower in CP + MCG than in the CP group. This study suggests that CP and ROS quenchers act in parallel to improve mitochondrial function and to provide protection against IR injury at 27°C.  相似文献   
4.
BACKGROUND AND OBJECTIVE: Volatile anaesthetic effects on altering tone after blocking nitric oxide synthase, cyclo-oxygenase-prostaglandin synthase and KATP channel pathways are controversial. We examined in isolated guinea pig hearts whether anaesthetics alter bradykinin and 5-hydroxytryptamine-induced effects on coronary flow and percentage oxygen extraction after blocking these pathways. METHODS: Before and during exposure to sevoflurane, halothane or isoflurane, hearts were infused with 10-13-10-8 M bradykinin, or 10-8-10-6 M 5-hydroxytryptamine (serotonin), with either L-NAME, indomethacin, or glibenclamide. Bradykinin or 5-hydroxytryptamine alone increased flow and decreased percentage oxygen extraction in a concentration-dependent manner; these effects were largely blocked by L-NAME (nitro-L-arginine methylester), which also decreased basal flow and increased basal percentage oxygen extraction. RESULTS: The anaesthetics restored bradykinin and 5-hydroxytryptamine-induced increases in flow or decreases in percentage oxygen extraction after inhibition by L-NAME. Indomethacin or glibenclamide alone had little effect on basal flow and percentage oxygen extraction. The anaesthetics restored bradykinin and 5-hydroxytryptamine-induced increases in flow or decreases in percentage oxygen extraction after inhibition by L-NAME. Indomethacin or glibenclamide alone had little effect on basal flow and percentage oxygen extraction. Drug-induced increases in flow and decreases in percentage oxygen extraction in the absence or presence of glibenclamide or indomethacin were not altered at either of the two concentrations of anaesthetics. CONCLUSIONS: Endothelium-dependent vasodilatation is not affected by blocking prostaglandin release or KATP channels in the intact heart even in the presence of an anaesthetic. However, the diminished responses to vasodilators after nitric oxide synthase inhibition is largely restored or enhanced by anaesthetics.  相似文献   
5.
Mitochondrial dysfunction is a hypothesized component in the multifactorial pathogenesis of migraine without aura (MoA, 'common migraine') and the related condition of cyclic vomiting syndrome (CVS). In this study, the entire mitochondrial genome was sequenced in 20 haplogroup-H CVS patients, a subject group studied because of greater genotypic and phenotypic homogeneity. Sequences were compared against haplogroup-H controls. Polymorphisms of interest were tested in 10 additional CVS subjects and in 112 haplogroup-H adults with MoA. The 16519C→T polymorphism was found to be highly disease associated: 21/30 CVS subjects [70%, odds ratio (OR) 6.2] and 58/112 migraineurs (52%, OR 3.6) vs. 63/231 controls (27%). A second polymorphism, 3010G→A, was found to be highly disease associated in those subjects with 16519T: 6/21 CVS subjects (29%, OR 17) and 15/58 migraineurs (26%, OR 15) vs. 1/63 controls (1.6%). Our data suggest that these polymorphisms constitute a substantial proportion of the genetic factor in migraine pathogenesis, and strengthen the hypothesis that there is a component of mitochondrial dysfunction in migraine.  相似文献   
6.
Inhibition of Na+/H+ exchange (NHE) during ischemia reduces cardiac injury due to reduced reverse mode Na+/Ca2+ exchange. We hypothesized that activating NHE-1 at buffer pH 8 during ischemia increases mitochondrial oxidation, Ca2+ overload, and reactive O2 species (ROS) levels and worsens functional recovery in isolated hearts and that NHE inhibition reverses these effects. Guinea pig hearts were perfused with buffer at pH 7.4 (control) or pH 8 +/- NHE inhibitor eniporide for 10 minutes before and for 10 minutes after 35- minute ischemia and then for 110 minutes with pH 7.4 buffer alone. Mitochondrial NADH and FAD, [Ca2+], and superoxide were measured by spectrophotofluorometry. NADH and FAD were more oxidized, and cardiac function was worse throughout reperfusion after pH 8 versus pH 7.4, Ca2+ overload was greater at 10-minute reperfusion, and superoxide generation was higher at 30-minute reperfusion. The pH 7.4 and eniporide groups exhibited similar mitochondrial function, and cardiac performance was most improved after pH 7.4+eniporide. Cardiac function on reperfusion after pH 8+eniporide was better than after pH 8. Percent infarction was largest after pH 8 and smallest after pH 7.4+eniporide. Activation of NHE with pH 8 buffer and the subsequent decline in redox state with greater ROS and Ca2+ loading underlie the poor functional recovery after ischemia and reperfusion.  相似文献   
7.
BACKGROUND: Anesthetic preconditioning (APC) with sevoflurane reduces myocardial ischemia-reperfusion injury. The authors tested whether two brief exposures to sevoflurane would lead to a better preconditioning state than would a single longer exposure and whether dual exposure to a lower (L) concentration of sevoflurane would achieve an outcome similar to that associated with a single exposure to a higher (H) concentration. METHODS: Langendorff-prepared guinea pig hearts were exposed to 0.4 mM sevoflurane once for 15 min (H1-15; n = 8) or 0.4 mM (H2-5; n = 8) or 0.2 mM sevoflurane (L2-5; n = 8) twice for 5 min, with a 5-min washout period interspersed. Sevoflurane was then washed out for 20 min before 30 min of global no-flow ischemia and 120 min of reperfusion. Control hearts (n = 8) were not subjected to APC. Left ventricular pressure was measured isovolumetrically. Ventricular infarct size was determined by tetrazolium staining and cumulative planimetry. Values are expressed as mean +/- SD. RESULTS: The authors found a better functional return and a lesser percentage of infarction on reperfusion in H2-5 (28 +/- 9%) than in H1-15 (36 +/- 8%; P < 0.05), L2-5 (43 +/- 6%; P < 0.05), or control hearts (52 +/- 7%; P < 0.05). CONCLUSION: These results suggest that APC depends not only on the concentration but also on the protocol used for preconditioning. Similarly to ischemic preconditioning, repeated application of the volatile anesthetic seems to be more important than the duration of exposure in initiating the signaling sequence that elicits APC at clinically relevant concentrations. Therefore, repeated cycles of anesthetic exposure followed by volatile anesthetic-free periods may be beneficial for APC in the clinical setting.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号