首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
基础医学   1篇
临床医学   1篇
内科学   1篇
外科学   1篇
  2023年   1篇
  2020年   1篇
  2016年   1篇
  2006年   1篇
排序方式: 共有4条查询结果,搜索用时 16 毫秒
1
1.
Tendinitis is a common and a performance‐limiting injury in athletes. This study describes the value of intralesional tendon‐derived progenitor cell (TDPC) injections in equine flexor tendinitis. Collagenase‐induced tendinitis was created in both front superficial digital flexor (SDF) tendons. Four weeks later, the forelimb tendon lesions were treated with 1 × 107 autogenous TDPCs or saline. Tendinitis was also induced by collagenase in one hind SDF tendon, to study the survival and distribution of DiI‐labeled TDPCs 1, 2, 4, and 6 weeks after injection. The remaining normal tendon was used as a “control.” Twelve weeks after forelimb TDPC injections, tendons were harvested for assessment of matrix gene expression, biochemical, biomechanical, and histological characteristics. DiI‐labeled TDPCs were abundant 1 week after injection but gradually declined over time and were undetectable after 6 weeks. Twelve weeks after TDPC injection, collagens I and III, COMP and tenomodulin mRNA levels were similar (p = 0.3) in both TDPC and saline groups and higher (p < 0.05) than normal tendon. Yield and maximal stresses of the TDPC group were significantly greater (p = 0.005) than the saline group's and similar (p = 0.6) to normal tendon. However, the elastic modulus of the TDPC and saline groups were not significantly different (p = 0.32). Histological assessment of the repair tissues with Fourier transform‐second harmonic generation imaging demonstrated that collagen alignment was significantly better (p = 0.02) in TDPC group than in the saline controls. In summary, treating collagenase‐induced flexor tendon lesions with TDPCs improved the tensile strength and collagen fiber alignment of the repair tissue. Study Design © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2162–2171, 2016.  相似文献   
2.
The Plasmodium sporozoite is infective for mosquito salivary glands and vertebrate host tissues. Although it is a key developmental stage of the malaria parasite, relatively few sporozoite surface or secreted proteins have been identified and characterized. Herein, we describe the molecular and cellular characterization of a novel surface molecule that is preferentially-expressed in salivary gland sporozoites as compared to oocyst and hemolymph sporozoites. This molecule, designated the sporozoite and erythrocytic stages (SES) protein (formerly known as Pg4), exhibits a spiral surface labeling pattern that spans over a known sporozoite surface antigen, the circumsporozoite protein, with only minor co-localization. SES consists of 551 amino acids encoding a putative 63.2kDa protein that has been shown to be expressed not only on particular sporozoite stages, but also during the asexual and gametocyte stages. This novel protein also has three domains of unknown function that are conserved in at least eight Plasmodium spp. that represent human, avian, non-human primate, and rodent malarias.  相似文献   
3.
This work presents the influence of post processing on morphology, thermal and electrical properties of indium tin oxide (ITO) thin films annealed at 400 °C in different atmospheres. The commercially available 170 nm thick ITO layers deposited on glass were used as a starting material. The X-ray diffraction measurements revealed polycrystalline structure with dominant signal from (222) plane for all samples. The annealing reduces the intensity of this peak and causes increase of (221) and (440) peaks. Atomic force microscopy images showed that the surface morphology is typical for polycrystalline layers with roughness not exceeding few nm. Annealing in the oxygen and the nitrogen-hydrogen mixture (NHM) changes shapes of grains. The electrical conductivity decreases after annealing except the one of layer annealed in NHM. Thermal conductivities of annealed ITO thin films were in range from 6.4 to 10.6 W·m−1·K−1, and they were higher than the one for starting material—5.1 W·m−1·K−1. Present work showed that annealing can be used to modify properties of ITO layers to make them useful for specific applications e.g., in ITO based solar cells.  相似文献   
4.
The development of thin-film thermoelectric applications in sensing and energy harvesting can benefit largely from suitable deposition methods for earth-abundant materials. In this study, p-type copper oxide thin films have been prepared on soda lime silicate glass by direct current (DC) magnetron sputtering at room temperature from a pure copper metallic target in an argon atmosphere, followed by subsequent annealing steps at 300 °C under various atmospheres, namely air (CuO:air), nitrogen (CuO:N) and oxygen (CuO:O). The resultant films have been studied to understand the influence of various annealing atmospheres on the structural, spectroscopic and thermoelectric properties. X-ray diffraction (XRD) patterns of the films showed reflexes that could be assigned to those of crystalline CuO with a thin mixed Cu(I)Cu(II) oxide, which was also observed by near edge X-ray absorption fine structure spectroscopy (NEXAFS). The positive Seebeck coefficient (S) reached values of up to 204 μV K−1, confirming the p-type behavior of the films. Annealing under oxygen provided a significant improvement in the electrical conductivity up to 50 S m−1, resulting in a power factor of 2 μW m−1 K−2. The results reveal the interplay between the intrinsic composition and the thermoelectric performance of mixed copper oxide thin films, which can be finely adjusted by simply varying the annealing atmosphere.

This study reveals the interplay between the composition and thermoelectric performance of mixed copper oxide thin films, which can be finely adjusted by varying the annealing atmosphere.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号