首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
  国内免费   2篇
临床医学   1篇
神经病学   1篇
外科学   13篇
  2023年   1篇
  2009年   5篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Objective To evaluate the character of the collagen-chitosan-chondroitin sulfate scaffold seeded with rat adipose tissue-derived stromal cells. Methods A dipose tissue were harvested from 6 weeks old Wistar rats and the stromal cells were harvested by type Ⅰ collagenase and then cultured in vitro. Type Ⅰ collagen was fully mixed with chitosan, freeze-dried and cross-linked with chondroitin sulfate, then freeze-dried again and sterilized by ethylene oxide. The pore diameter, water content, porosity of the scaffold were tested. The adipose tissue-derived stromal cells were digested, seeded into the plates, scaffold, and cen-trifuged into pellet, and then induced into cartilage. MTT detection for cell proliferation was done. After 3 weeks, the cell morphology, and cell proliferation and adhesion were observed, and chondrngenic differenti-ation was also analyzed. Results The pore diameter, water content, porosity tested for the scaffold showed an appropriate form. Cell proliferation showed faster in the scaffold and pellet culture system after 5 day, there was still cell proliferation in the scaffold system after 14 days but no obvious changes in the pellet cul-ture system; ceils on the scaffold proliferated densely showed by histological staining, but there was a scaf-fold structure residues in the inner layer. The finding of type Ⅱ immunohistochemistry stain showed that cells express strong positive for type Ⅱ collagen in the scaffold and pellet culture system whereas it was weakly positive in the plate culture system; the specific mRNA for cartilage, type Ⅱ collagen, aggrecan and SOX-9 were expressed in all three systems showed by RT-PCR, but type X collagen was expressed continu-ously in the plate culture system and expressed after 21 days in the pellet culture system, whereas it was not detected in the collagen-chitosan-chondroitin sulfate scaffold system. Conclusion The parameters of the collagen-chitosan-chondroitin sulfate scaffold were suitable in our study. The results suggested that it can promote the adipose tissue-derived stromal cells proliferation and chondrogenic differentiation better than the plate and pellet culture systems and maintain the phenotype of chondrocytes well; it is the optimal choice for cartilage tissue engineering in the future.  相似文献   
2.
Objective To evaluate the character of the collagen-chitosan-chondroitin sulfate scaffold seeded with rat adipose tissue-derived stromal cells. Methods A dipose tissue were harvested from 6 weeks old Wistar rats and the stromal cells were harvested by type Ⅰ collagenase and then cultured in vitro. Type Ⅰ collagen was fully mixed with chitosan, freeze-dried and cross-linked with chondroitin sulfate, then freeze-dried again and sterilized by ethylene oxide. The pore diameter, water content, porosity of the scaffold were tested. The adipose tissue-derived stromal cells were digested, seeded into the plates, scaffold, and cen-trifuged into pellet, and then induced into cartilage. MTT detection for cell proliferation was done. After 3 weeks, the cell morphology, and cell proliferation and adhesion were observed, and chondrngenic differenti-ation was also analyzed. Results The pore diameter, water content, porosity tested for the scaffold showed an appropriate form. Cell proliferation showed faster in the scaffold and pellet culture system after 5 day, there was still cell proliferation in the scaffold system after 14 days but no obvious changes in the pellet cul-ture system; ceils on the scaffold proliferated densely showed by histological staining, but there was a scaf-fold structure residues in the inner layer. The finding of type Ⅱ immunohistochemistry stain showed that cells express strong positive for type Ⅱ collagen in the scaffold and pellet culture system whereas it was weakly positive in the plate culture system; the specific mRNA for cartilage, type Ⅱ collagen, aggrecan and SOX-9 were expressed in all three systems showed by RT-PCR, but type X collagen was expressed continu-ously in the plate culture system and expressed after 21 days in the pellet culture system, whereas it was not detected in the collagen-chitosan-chondroitin sulfate scaffold system. Conclusion The parameters of the collagen-chitosan-chondroitin sulfate scaffold were suitable in our study. The results suggested that it can promote the adipose tissue-derived stromal cells proliferation and chondrogenic differentiation better than the plate and pellet culture systems and maintain the phenotype of chondrocytes well; it is the optimal choice for cartilage tissue engineering in the future.  相似文献   
3.
目的 制备壳聚糖-胶原-硫酸软骨素三维支架,并与大鼠脂肪间充质干细胞复合培养,探讨其作为软骨组织工程支架的可行性.方法 冷冻干燥法制备壳聚糖-胶原-硫酸软骨素复合多孔海绵支架材料,采用体积法和称重法测定支架的孔隙率和吸水性,扫描电镜观察支架材料的形态结构.分离培养大鼠脂肪间充质干细胞,流式细胞学检测大鼠脂肪间充质干细胞的表面标志CD29、CD34、CD44、CD45,将传至3代的细胞,以2×106/ml的密度接种于自制的壳聚糖-胶原-硫酸软骨素三维支架上.实验组为含TGF-β1的培养基,对照组无TGF-β1,培养3周后,通过免疫组织化学,RT-PCR及westenblot方法对诱导后的细胞进行鉴定.结果 制备的壳聚糖-胶原-硫酸软骨素三维支架具有合适的三维多孔结构,孔隙率为(92.23±1.68)%,孔径为100~130 μm.复合培养3周后,Ⅱ型胶原免疫组织化学染色成阳性,RT-PCR结果表明有蛋白聚糖和Ⅱ型胶原mRNA的表达,westenblot检测出Ⅱ型胶原蛋白的表达.结论 壳聚糖-胶原-硫酸软骨素复合支架材料可为脂肪间充质干细胞生长分化及组织形成提供一个良好的环境, 在软骨组织工程的支架材料领域有较广泛的应用前景.  相似文献   
4.
目的 探讨大鼠脂肪干细胞复合胶原-壳聚糖-硫酸软骨素三维支架的优越性.方法 选用6周龄健康Wistar大鼠,分离出脂肪干细胞后行体外培养.将Ⅰ型胶原溶液与壳聚糖溶液混合后冷冻干燥,交联硫酸软骨素后再冷冻干燥得到复合三维支架,检测支架的孔径值、含水量及孔隙率.将接种的脂肪干细胞消化后分别接种到平面、微球和支架,软骨方向诱导培养.MTT检测细胞增殖情况,3周后倒置显微镜及扫描电镜观察细胞形态及在支架上的生长及黏附情况,并分析成软骨分化的情况.结果 5 d后MTT检测显示三维支架组及微球组细胞增殖速度较平面组快;三维支架组14 d后仍有细胞增殖.组织学分析显示细胞在支架上密集重叠生长,内层仍有残留支架结构.Ⅱ型胶原免疫组化检测结果显示,三维支架组及微球组表达呈强阳性,而平面组表达呈弱阳性.RT-PCR结果显示各组均有软骨特异性mRNA的表达.但平面组一直表达X型胶原,微球组培养至21 d时也表达X型胶原,而三维支架组则一直未表达.结论 复合胶原-壳聚糖-硫酸软骨素三维支架能促进细胞的增殖、分化,并能更好地维持软骨细胞的表型,可以作为组织工程构建软骨的最佳选择.  相似文献   
5.
Objective To evaluate the character of the collagen-chitosan-chondroitin sulfate scaffold seeded with rat adipose tissue-derived stromal cells. Methods A dipose tissue were harvested from 6 weeks old Wistar rats and the stromal cells were harvested by type Ⅰ collagenase and then cultured in vitro. Type Ⅰ collagen was fully mixed with chitosan, freeze-dried and cross-linked with chondroitin sulfate, then freeze-dried again and sterilized by ethylene oxide. The pore diameter, water content, porosity of the scaffold were tested. The adipose tissue-derived stromal cells were digested, seeded into the plates, scaffold, and cen-trifuged into pellet, and then induced into cartilage. MTT detection for cell proliferation was done. After 3 weeks, the cell morphology, and cell proliferation and adhesion were observed, and chondrngenic differenti-ation was also analyzed. Results The pore diameter, water content, porosity tested for the scaffold showed an appropriate form. Cell proliferation showed faster in the scaffold and pellet culture system after 5 day, there was still cell proliferation in the scaffold system after 14 days but no obvious changes in the pellet cul-ture system; ceils on the scaffold proliferated densely showed by histological staining, but there was a scaf-fold structure residues in the inner layer. The finding of type Ⅱ immunohistochemistry stain showed that cells express strong positive for type Ⅱ collagen in the scaffold and pellet culture system whereas it was weakly positive in the plate culture system; the specific mRNA for cartilage, type Ⅱ collagen, aggrecan and SOX-9 were expressed in all three systems showed by RT-PCR, but type X collagen was expressed continu-ously in the plate culture system and expressed after 21 days in the pellet culture system, whereas it was not detected in the collagen-chitosan-chondroitin sulfate scaffold system. Conclusion The parameters of the collagen-chitosan-chondroitin sulfate scaffold were suitable in our study. The results suggested that it can promote the adipose tissue-derived stromal cells proliferation and chondrogenic differentiation better than the plate and pellet culture systems and maintain the phenotype of chondrocytes well; it is the optimal choice for cartilage tissue engineering in the future.  相似文献   
6.
Objective To evaluate the character of the collagen-chitosan-chondroitin sulfate scaffold seeded with rat adipose tissue-derived stromal cells. Methods A dipose tissue were harvested from 6 weeks old Wistar rats and the stromal cells were harvested by type Ⅰ collagenase and then cultured in vitro. Type Ⅰ collagen was fully mixed with chitosan, freeze-dried and cross-linked with chondroitin sulfate, then freeze-dried again and sterilized by ethylene oxide. The pore diameter, water content, porosity of the scaffold were tested. The adipose tissue-derived stromal cells were digested, seeded into the plates, scaffold, and cen-trifuged into pellet, and then induced into cartilage. MTT detection for cell proliferation was done. After 3 weeks, the cell morphology, and cell proliferation and adhesion were observed, and chondrngenic differenti-ation was also analyzed. Results The pore diameter, water content, porosity tested for the scaffold showed an appropriate form. Cell proliferation showed faster in the scaffold and pellet culture system after 5 day, there was still cell proliferation in the scaffold system after 14 days but no obvious changes in the pellet cul-ture system; ceils on the scaffold proliferated densely showed by histological staining, but there was a scaf-fold structure residues in the inner layer. The finding of type Ⅱ immunohistochemistry stain showed that cells express strong positive for type Ⅱ collagen in the scaffold and pellet culture system whereas it was weakly positive in the plate culture system; the specific mRNA for cartilage, type Ⅱ collagen, aggrecan and SOX-9 were expressed in all three systems showed by RT-PCR, but type X collagen was expressed continu-ously in the plate culture system and expressed after 21 days in the pellet culture system, whereas it was not detected in the collagen-chitosan-chondroitin sulfate scaffold system. Conclusion The parameters of the collagen-chitosan-chondroitin sulfate scaffold were suitable in our study. The results suggested that it can promote the adipose tissue-derived stromal cells proliferation and chondrogenic differentiation better than the plate and pellet culture systems and maintain the phenotype of chondrocytes well; it is the optimal choice for cartilage tissue engineering in the future.  相似文献   
7.
Objective To evaluate the character of the collagen-chitosan-chondroitin sulfate scaffold seeded with rat adipose tissue-derived stromal cells. Methods A dipose tissue were harvested from 6 weeks old Wistar rats and the stromal cells were harvested by type Ⅰ collagenase and then cultured in vitro. Type Ⅰ collagen was fully mixed with chitosan, freeze-dried and cross-linked with chondroitin sulfate, then freeze-dried again and sterilized by ethylene oxide. The pore diameter, water content, porosity of the scaffold were tested. The adipose tissue-derived stromal cells were digested, seeded into the plates, scaffold, and cen-trifuged into pellet, and then induced into cartilage. MTT detection for cell proliferation was done. After 3 weeks, the cell morphology, and cell proliferation and adhesion were observed, and chondrngenic differenti-ation was also analyzed. Results The pore diameter, water content, porosity tested for the scaffold showed an appropriate form. Cell proliferation showed faster in the scaffold and pellet culture system after 5 day, there was still cell proliferation in the scaffold system after 14 days but no obvious changes in the pellet cul-ture system; ceils on the scaffold proliferated densely showed by histological staining, but there was a scaf-fold structure residues in the inner layer. The finding of type Ⅱ immunohistochemistry stain showed that cells express strong positive for type Ⅱ collagen in the scaffold and pellet culture system whereas it was weakly positive in the plate culture system; the specific mRNA for cartilage, type Ⅱ collagen, aggrecan and SOX-9 were expressed in all three systems showed by RT-PCR, but type X collagen was expressed continu-ously in the plate culture system and expressed after 21 days in the pellet culture system, whereas it was not detected in the collagen-chitosan-chondroitin sulfate scaffold system. Conclusion The parameters of the collagen-chitosan-chondroitin sulfate scaffold were suitable in our study. The results suggested that it can promote the adipose tissue-derived stromal cells proliferation and chondrogenic differentiation better than the plate and pellet culture systems and maintain the phenotype of chondrocytes well; it is the optimal choice for cartilage tissue engineering in the future.  相似文献   
8.
Objective To evaluate the character of the collagen-chitosan-chondroitin sulfate scaffold seeded with rat adipose tissue-derived stromal cells. Methods A dipose tissue were harvested from 6 weeks old Wistar rats and the stromal cells were harvested by type Ⅰ collagenase and then cultured in vitro. Type Ⅰ collagen was fully mixed with chitosan, freeze-dried and cross-linked with chondroitin sulfate, then freeze-dried again and sterilized by ethylene oxide. The pore diameter, water content, porosity of the scaffold were tested. The adipose tissue-derived stromal cells were digested, seeded into the plates, scaffold, and cen-trifuged into pellet, and then induced into cartilage. MTT detection for cell proliferation was done. After 3 weeks, the cell morphology, and cell proliferation and adhesion were observed, and chondrngenic differenti-ation was also analyzed. Results The pore diameter, water content, porosity tested for the scaffold showed an appropriate form. Cell proliferation showed faster in the scaffold and pellet culture system after 5 day, there was still cell proliferation in the scaffold system after 14 days but no obvious changes in the pellet cul-ture system; ceils on the scaffold proliferated densely showed by histological staining, but there was a scaf-fold structure residues in the inner layer. The finding of type Ⅱ immunohistochemistry stain showed that cells express strong positive for type Ⅱ collagen in the scaffold and pellet culture system whereas it was weakly positive in the plate culture system; the specific mRNA for cartilage, type Ⅱ collagen, aggrecan and SOX-9 were expressed in all three systems showed by RT-PCR, but type X collagen was expressed continu-ously in the plate culture system and expressed after 21 days in the pellet culture system, whereas it was not detected in the collagen-chitosan-chondroitin sulfate scaffold system. Conclusion The parameters of the collagen-chitosan-chondroitin sulfate scaffold were suitable in our study. The results suggested that it can promote the adipose tissue-derived stromal cells proliferation and chondrogenic differentiation better than the plate and pellet culture systems and maintain the phenotype of chondrocytes well; it is the optimal choice for cartilage tissue engineering in the future.  相似文献   
9.
背景:软骨组织工程要求植入的软骨细胞在三维支架材料中能够合成与软骨相同的软骨基质,而植入密度是成功的关键点之一.目的:探讨壳聚糖一胶原一硫酸软骨素支架上不同种植密度对大鼠脂肪间充质干细胞成软骨能力的影响.设计、时间及地点:细胞一支架学体外观察,于2007-11/2008-07在中国医科大学细胞生物实验室完成.材料:清洁级雄性SD大鼠6只,由中国医科大学实验动物中心提供.方法:室温下以乙酸为溶剂的5 g/L Ⅰ型胶原溶液与20 g/L壳聚糖按7:3体积比置于预冷的模具中混合,冷冻干燥后将支架切成5 mm×5 mm×2 mm,浸入含20 g/L硫酸软骨素的乙醇中室温交联,双蒸水冲洗至中性,再次冷冻干燥即为壳聚糖-胶原-硫酸软骨素支架.切取大鼠腹股沟脂肪组织,通过胰蛋白酶和Ⅰ型胶原酶消化后得到脂肪间充质干细胞.将制备的壳聚糖-胶原-硫酸软骨素支架分为3组,分别调整第3代细胞密度为2×109L-1,2×1010L-1,2×1011L-1,吸取细胞悬液50 μL均匀的种植于每个支架上,加入成软骨诱导培养基培养3周.主要观察指标:取样制成切片进行苏木精-伊红染色、Ⅱ型胶原免疫组化染色,RT-PCR检测软骨特异性基因的表达.结果:诱导培养3周后,各组细胞在支架中生长黏附良好,且高种植密度2×1011L-1组细胞排列紧密.有较多的基质形成,并有软骨陷窝样结构:各组Ⅱ型胶原均呈阳性表达,并随细胞种植密度的升高呈递增趋势.RT-PCR结果显示.随着细胞种植密度的升高,蛋白聚糖、Ⅱ型胶原mRNA的表达逐渐增强,而Ⅹ型胶原mRNA的表达逐渐下降.结论:壳聚糖-胶原-硫酸软骨素复合支架材料可为脂肪间充质干细胞生长分化及组织形成提供一个良好的环境,2×1011L-1高密度种植有利于脂肪间充质干细胞的成软骨分化.  相似文献   
10.
Objective To evaluate the character of the collagen-chitosan-chondroitin sulfate scaffold seeded with rat adipose tissue-derived stromal cells. Methods A dipose tissue were harvested from 6 weeks old Wistar rats and the stromal cells were harvested by type Ⅰ collagenase and then cultured in vitro. Type Ⅰ collagen was fully mixed with chitosan, freeze-dried and cross-linked with chondroitin sulfate, then freeze-dried again and sterilized by ethylene oxide. The pore diameter, water content, porosity of the scaffold were tested. The adipose tissue-derived stromal cells were digested, seeded into the plates, scaffold, and cen-trifuged into pellet, and then induced into cartilage. MTT detection for cell proliferation was done. After 3 weeks, the cell morphology, and cell proliferation and adhesion were observed, and chondrngenic differenti-ation was also analyzed. Results The pore diameter, water content, porosity tested for the scaffold showed an appropriate form. Cell proliferation showed faster in the scaffold and pellet culture system after 5 day, there was still cell proliferation in the scaffold system after 14 days but no obvious changes in the pellet cul-ture system; ceils on the scaffold proliferated densely showed by histological staining, but there was a scaf-fold structure residues in the inner layer. The finding of type Ⅱ immunohistochemistry stain showed that cells express strong positive for type Ⅱ collagen in the scaffold and pellet culture system whereas it was weakly positive in the plate culture system; the specific mRNA for cartilage, type Ⅱ collagen, aggrecan and SOX-9 were expressed in all three systems showed by RT-PCR, but type X collagen was expressed continu-ously in the plate culture system and expressed after 21 days in the pellet culture system, whereas it was not detected in the collagen-chitosan-chondroitin sulfate scaffold system. Conclusion The parameters of the collagen-chitosan-chondroitin sulfate scaffold were suitable in our study. The results suggested that it can promote the adipose tissue-derived stromal cells proliferation and chondrogenic differentiation better than the plate and pellet culture systems and maintain the phenotype of chondrocytes well; it is the optimal choice for cartilage tissue engineering in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号