首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   1篇
基础医学   7篇
口腔科学   32篇
临床医学   1篇
内科学   7篇
皮肤病学   2篇
神经病学   3篇
外科学   5篇
预防医学   3篇
药学   1篇
肿瘤学   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2014年   1篇
  2013年   6篇
  2012年   5篇
  2011年   7篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1993年   1篇
  1991年   1篇
  1980年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
1.
BACKGROUND: One of the major mechanical functions of collagenous tissues is the storage, transmission and dissipation of elastic energy during mechanical deformation. In skin, mechanical energy is stored during loading and then is transmitted and dissipated, which protects skin from mechanical failure. Thus energy storage (elastic properties) and dissipation (viscous properties) are important characteristics of extracellular matrices. METHODS: A uniaxial incremental stress relaxation test method has been used to characterize the time-dependent (viscous) and time-independent (elastic) properties of human dermis. Viscoelasticity was investigated in processed human dermis that was equilibrated at pHs of 3.0, 7.4 and 11.0 in an effort to study the link between electrostatic interactions within the collagen matrix and macroscopic tissue properties. RESULTS: Our results show that the solution pH and the charge on collagen significantly affected the high-strain elastic behavior of dermis; the elastic behavior of skin has previously been shown to be directly correlated with axial stretching of the collagen triple helix in crosslinked collagen fibrils. A positive linear correlation existed between the high-strain elastic modulus and both pH (R(2)=0.96) and the total number of charged residues on collagen (R(2)=0.93). These results provide in vitro/ex vivo evidence that charged groups on the surface of collagen molecules in processed human skin influence the high-strain elastic properties of dermis and are likely to be involved in elastic energy storage. CONCLUSION: It is proposed that the pH and charged residue dependency of the elastic modulus suggests that charged pair interactions and repulsions within and between collagen molecules are involved in elastic energy storage during stretching at high strains. It is hypothesized that elastic energy storage is associated with the stretching of pairs of charged amino acid residues that are found primarily in the flexible regions of collagen molecules.  相似文献   
2.
3.
4.
5.
Cancers that grow in bone, such as myeloma and breast cancer metastases, cause devastating osteolytic bone destruction. These cancers hijack bone remodeling by stimulating osteoclastic bone resorption and suppressing bone formation. Currently, treatment is targeted primarily at blocking bone resorption, but this approach has achieved only limited success. Stimulating osteoblastic bone formation to promote repair is a novel alternative approach. We show that a soluble activin receptor type IIA fusion protein (ActRIIA.muFc) stimulates osteoblastogenesis (p < .01), promotes bone formation (p < .01) and increases bone mass in vivo (p < .001). We show that the development of osteolytic bone lesions in mice bearing murine myeloma cells is caused by both increased resorption (p < .05) and suppression of bone formation (p < .01). ActRIIA.muFc treatment stimulates osteoblastogenesis (p < .01), prevents myeloma‐induced suppression of bone formation (p < .05), blocks the development of osteolytic bone lesions (p < .05), and increases survival (p < .05). We also show, in a murine model of breast cancer bone metastasis, that ActRIIA.muFc again prevents bone destruction (p < .001) and inhibits bone metastases (p < .05). These findings show that stimulating osteoblastic bone formation with ActRIIA.muFc blocks the formation of osteolytic bone lesions and bone metastases in models of myeloma and breast cancer and paves the way for new approaches to treating this debilitating aspect of cancer. © 2010 American Society for Bone and Mineral Research.  相似文献   
6.
X-linked myotubular myopathy (XLMTM) is a congenital disorder caused by deficiency of the lipid phosphatase, myotubularin. Patients with XLMTM often have severe perinatal weakness that requires mechanical ventilation to prevent death from respiratory failure. Muscle biopsy specimens from patients with XLMTM exhibit small myofibers with central nuclei and central aggregations of organelles in many cells. It was postulated that therapeutically increasing muscle fiber size would cause symptomatic improvement in myotubularin deficiency. Recent studies have elucidated an important role for the activin-receptor type IIB (ActRIIB) in regulation of muscle growth and have demonstrated that ActRIIB inhibition results in significant muscle hypertrophy. To evaluate whether promoting muscle hypertrophy can attenuate symptoms resulting from myotubularin deficiency, the effect of ActRIIB-mFC treatment was determined in myotubularin-deficient (Mtm1δ4) mice. Compared with wild-type mice, untreated Mtm1δ4 mice have decreased body weight, skeletal muscle hypotrophy, and reduced survival. Treatment of Mtm1δ4 mice with ActRIIB-mFC produced a 17% extension of lifespan, with transient increases in weight, forelimb grip strength, and myofiber size. Pathologic analysis of Mtm1δ4 mice during treatment revealed that ActRIIB-mFC produced marked hypertrophy restricted to type 2b myofibers, which suggests that oxidative fibers in Mtm1δ4 animals are incapable of a hypertrophic response in this setting. These results support ActRIIB-mFC as an effective treatment for the weakness observed in myotubularin deficiency.  相似文献   
7.
The activin receptor type IIB (ActRIIB) is a transmembrane receptor for transforming growth factor-β superfamily members, including myostatin, that are involved in the negative regulation of skeletal muscle mass. We tested the translational hypothesis that blocking ligand binding to ActRIIB for 12 weeks would stimulate skeletal muscle growth and improve muscle function in the mdx mouse. ActRIIB was targeted using a novel inhibitor comprised of the extracellular portion of the ActRIIB fused to the Fc portion of murine IgG (sActRIIB), at concentrations of 1.0 and 10.0 mg/kg(-1) body weight. After 12 weeks of treatment, the 10.0 mg/kg(-1) dose caused a 27% increase in body weight with a concomitant 33% increase in lean muscle mass. Absolute force production of the extensor digitorum longus muscle ex vivo was higher in mice after treatment with either dose of sActRIIB, and the specific force was significantly higher after the lower dose (1.0 mg/kg(-1)), indicating functional improvement in the muscle. Circulating creatine kinase levels were significantly lower in mice treated with sActRIIB, compared with control mice. These data show that targeting the ActRIIB improves skeletal muscle mass and functional strength in the mdx mouse model of DMD, providing a therapeutic rationale for use of this molecule in treating skeletal myopathies.  相似文献   
8.
Amyotrophic lateral sclerosis (ALS) is a neurologic disease characterized by progressive weakness that results in death within a few years of onset by respiratory failure. Myostatin is a member of the TGF-β superfamily that is predominantly expressed in muscle and acts as a negative regulator of muscle growth. Attenuating myostatin has previously been shown to produce increased muscle mass and strength in normal and disease animal models. In this study, a mouse model of ALS (SOD1G93A transgenic mice) was treated with a soluble activin receptor, type IIB (ActRIIB.mFc) which is a putative endogenous signaling receptor for myostatin in addition to other ligands of the TGF-β superfamily. ActRIIB.mFc treatment produces a delay in the onset of weakness, an increase in body weight and grip strength, and an enlargement of muscle size whether initiated pre-symptomatically or after symptom onset. Treatment with ActRIIB.mFc did not increase survival or neuromuscular junction innervation in SOD1G93A transgenic mice. Pharmacologic treatment with ActRIIB.mFc was superior in all measurements to genetic deletion of myostatin in SOD1G93A transgenic mice. The improved function of SOD1G93A transgenic mice following treatment with ActRIIB.mFc is encouraging for the development of TGF-β pathway inhibitors to increase muscle strength in patients with ALS.  相似文献   
9.
Understanding the pathogenesis of cancer-related bone disease is crucial to the discovery of new therapies. Here we identify activin A, a TGF-β family member, as a therapeutically amenable target exploited by multiple myeloma (MM) to alter its microenvironmental niche favoring osteolysis. Increased bone marrow plasma activin A levels were found in MM patients with osteolytic disease. MM cell engagement of marrow stromal cells enhanced activin A secretion via adhesion-mediated JNK activation. Activin A, in turn, inhibited osteoblast differentiation via SMAD2-dependent distal-less homeobox–5 down-regulation. Targeting activin A by a soluble decoy receptor reversed osteoblast inhibition, ameliorated MM bone disease, and inhibited tumor growth in an in vivo humanized MM model, setting the stage for testing in human clinical trials.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号