首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
基础医学   1篇
口腔科学   9篇
外科学   12篇
  2021年   1篇
  2019年   1篇
  2017年   3篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
1.
2.
This study aimed to evaluate the possibility of introducing ultra-short pulsed lasers (USPL) in restorative dentistry by maintaining the well-known benefits of lasers for caries removal, but also overcoming disadvantages, such as thermal damage of irradiated substrate. USPL ablation of dental hard tissues was investigated in two phases. Phase 1—different wavelengths (355, 532, 1,045, and 1,064 nm), pulse durations (picoseconds and femtoseconds) and irradiation parameters (scanning speed, output power, and pulse repetition rate) were assessed for enamel and dentin. Ablation rate was determined, and the temperature increase measured in real time. Phase 2—the most favorable laser parameters were evaluated to correlate temperature increase to ablation rate and ablation efficiency. The influence of cooling methods (air, air–water spray) on ablation process was further analyzed. All parameters tested provided precise and selective tissue ablation. For all lasers, faster scanning speeds resulted in better interaction and reduced temperature increase. The most adequate results were observed for the 1064-nm ps-laser and the 1045-nm fs-laser. Forced cooling caused moderate changes in temperature increase, but reduced ablation, being considered unnecessary during irradiation with USPL. For dentin, the correlation between temperature increase and ablation efficiency was satisfactory for both pulse durations, while for enamel, the best correlation was observed for fs-laser, independently of the power used. USPL may be suitable for cavity preparation in dentin and enamel, since effective ablation and low temperature increase were observed. If adequate laser parameters are selected, this technique seems to be promising for promoting the laser-assisted, minimally invasive approach.  相似文献   
3.
4.
Recurrent herpes labialis is a worldwide life-long oral health problem that remains unsolved. It affects approximately one third of the world population and causes frequent pain and discomfort episodes, as well as social restriction due to its compromise of esthetic features. In addition, the available antiviral drugs have not been successful in completely eliminating the virus and its recurrence. Currently, different kinds of laser treatment and different protocols have been proposed for the management of recurrent herpes labialis. Therefore, the aim of the present article was to review the literature regarding the effects of laser irradiation on recurrent herpes labialis and to identify the indications and most successful clinical protocols. The literature was searched with the aim of identifying the effects on healing time, pain relief, duration of viral shedding, viral inactivation, and interval of recurrence. According to the literature, none of the laser treatment modalities is able to completely eliminate the virus and its recurrence. However, laser phototherapy appears to strongly decrease pain and the interval of recurrences without causing any side effects. Photodynamic therapy can be helpful in reducing viral titer in the vesicle phase, and high-power lasers may be useful to drain vesicles. The main advantages of the laser treatment appear to be the absence of side effects and drug interactions, which are especially helpful for older and immunocompromised patients. Although these results indicate a potential beneficial use for lasers in the management of recurrent herpes labialis, they are based on limited published clinical trials and case reports. The literature still lacks double-blind controlled clinical trials verifying these effects and such trials should be the focus of future research.  相似文献   
5.
The aim of this in vitro study was to evaluate the depth of effectiveness of erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation on microorganism reduction. From human roots, dentin slices of 100 μm to 1,000 μm thickness were prepared. These specimens were sterilized and then inoculated with 1 μl of Enterococcus faecalis suspension. The backs of the specimens were then irradiated with Er,Cr:YSGG radiation at a pulse energy of 3.13 mJ, delivered at an incidence angle of 5° to the dentin slice surface. A control group was left without irradiation. The remaining bacteria were collected in 1 ml sterilized NaCl solution, serially diluted and seeded in Columbia-Agar plates. Despite the low pulse energy of 3.13 mJ, the Er,Cr:YSGG laser irradiation resulted in significant bacterial reduction up to a dentin thickness of 500 μm (P < 0.05). Scanning electron microscopy (SEM) micrographs of the contaminated and irradiated surfaces showed the absence of a smear layer and opened dentinal tubules.  相似文献   
6.
The aim of this study was to compare the caries-preventive effect of a stabilized stannous fluoride/sodium fluoride dentifrice containing sodium hexametaphosphate with those of a regular, solely sodium fluoride-containing and amine fluoride-containing dentifrice on pre-demineralized bovine enamel specimens using a pH-cycling model. Bovine enamel specimens with two artificial lesions each were prepared. Baseline mineral loss of both lesions was analyzed using transversal microradiography (TMR). Eighty-five specimens with a mean (SD) baseline mineral loss of 3393 (683) vol% × µm were selected and randomly allocated to five groups (n = 13/15). Treatments during pH-cycling (28 days and 2 × 20 min demineralization/day) were: brushing twice daily with slurries of AmF (1400 ppm F?), NaF (1450 ppm F?), SnF2/NaF (1100 ppm F?/350 ppm F?), and fluoride-free (FF) dentifrices or they were immersed in distilled water and remained unbrushed (NB). Subsequently, from each specimen one lesion was covered with acid-resistant varnish, while the remaining lesion was demineralized for another 14 days. Differences in integrated mineral loss (??Z) were calculated between values before and after pH-cycling (??Z E1) as well as before pH-cycling and after second demineralization (??Z E2) using TMR. Treatments AmF and NaF induced a significantly higher mineral gain (??Z E1/??Z E2) compared to treatments FF and NB (p < 0.05; ANOVA test). Except for treatments AmF and NaF no significant differences in mineral loss between before and after pH-cycling could be observed (p < 0.05; t test) [??Z E1: AmF:1563 (767); NaF:1222 (1246); SnF2/NaF:258 (1259); FF:?52 (1223); NB:?151 (834)]. Both dentifrices with either AmF or NaF promoted remineralization, whereas SnF2/NaF dentifrice did not promote remineralization in a biofilm-free pH-cycling model.  相似文献   
7.
Objectives

The aim of the study was to investigate the caries-preventive effect of newly developed fluoride and fluoride-free toothpastes specially designed for erosion prevention. The hypothesis was that these products might also show superior caries-inhibiting effect than regular fluoride toothpastes, since they were designed for stronger erosive acid challenges.

Materials and methods

Enamel specimens were obtained from bovine teeth and pre-demineralized (pH = 4.95/21 days) to create artificial caries lesions. Baseline mineral loss (ΔZB) and lesion depth (LDB) were determined using transversal microradiography (TMR). Ninety specimens with a median ΔZB (SD) of 6027 ± 1546 vol% × μm were selected and randomly allocated to five groups (n = 18). Treatments during pH-cycling (14 days, 4 × 60 min demineralization/day) were brushing 2×/day with AmF (1400 ppm F, anti-caries [AC]); AmF/NaF/SnCl2/Chitosan (700 ppm F/700 ppm F/3500 ppm Sn2+, anti-erosion [AE1]); NaF/KNO3 (1400 ppm F, anti-erosion [AE2]); nano-hydroxyapatite-containing (0 ppm F, [nHA]); and fluoride-free toothpastes (0 ppm F, negative control [NC]). Toothpaste slurries were prepared with mineral salt solution (1:3 wt/wt). After pH-cycling specimens presenting lesion, surface loss (mainly by NC and nHA) were discarded. For the remaining 77 specimens, new TMR analyses (ΔZE/LDE) were performed. Changes in mineral loss (ΔΔZ = ΔZB − ΔZE) and lesion depth (ΔLD = LDB − LDE) were calculated.

Results

All toothpastes caused significantly less demineralization (lower ΔΔZ) than NC (p < 0.05, ANOVA) except for nHA. The fluoride toothpastes did not differ significantly regarding ΔΔZ and ΔLD (p > 0.05, ANOVA).

Conclusion/clinical relevance

While both anti-erosive and anti-caries toothpastes reduced mineral loss to a similar extent, the fluoride-free nano-hydroxyapatite-containing toothpaste seemed not to be suitable for inhibition of caries demineralization in vitro.

  相似文献   
8.
Clinical Oral Investigations - Detecting bacterial activity is considered a promising approach to monitor shifts from symbiosis to dysbiosis in oral microbiome. The present study aimed at...  相似文献   
9.
The aim of this in vitro study was to evaluate the effect of different surface treatments (control, diamond bur, erbium-doped yttrium aluminum garnet (Er:YAG) laser, and erbium, chromium:yttrium–scandium–gallium–garnet (Er,Cr:YSGG) laser) on sound dentin surface morphology and on microtensile bond strength (μTBS). Sixteen dentin fragments were randomly divided into four groups (n?=?4), and different surface treatments were analyzed by scanning electron microscopy. Ninety-six third molars were randomly divided into eight groups (n?=?12) according to type of surface treatment and adhesive system: G1 = Control + Clearfil SE Bond (SE); G2 = Control + Single Bond (SB); G3 = diamond bur (DB) + SE; G4 = DB + SB, G5 = Er:YAG laser (2.94 μm, 60 mJ, 2 Hz, 0.12 W, 19.3 J/cm2) + SE; G6 = Er:YAG + SB, G7 = Er,Cr:YSGG laser (2.78 μm, 50 mJ, 30 Hz, 1.5 W, 4.5 J/cm2) + SE; and G8 = Er,Cr:YSGG + SB. Composite blocks were bonded to the samples, and after 24-h storage in distilled/deionized water (37 °C), stick-shaped samples were obtained and submitted to μTBS test. Bond strength values (in megapascal) were analyzed by two-way ANOVA and Tukey tests (α?=?0.05). G1 (54.69?±?7.8 MPa) showed the highest mean, which was statistically significantly higher than all the other groups (p?<?0.05). For all treatments, SE showed higher bond strength than SB, except only for Er,Cr:YSGG treatment, in which the systems did not differ statistically from each other. Based on the irradiation parameters considered in this study, it can be concluded that Er:YAG and Er,Cr:YSGG irradiation presented lower values than the control group; however, their association with self-etching adhesive does not have a significantly negative effect on sound dentin (μTBS values of >20 MPa).  相似文献   
10.

Objective

The purpose of the study was to investigate whether dentine irradiation with a pulsed CO2 laser (10.6 μm) emitting pulses of 10 ms is capable of reducing dentine calcium and phosphorus losses in an artificial caries model.

Design

The 90 dentine slabs obtained from bovine teeth were randomly divided into six groups (n = 15): negative control group (GC); positive control group, treated with fluoride 1.23% (GF); and laser groups irradiated with 8 J/cm2 (L8); irradiated as in L8 + fluoride 1.23% (L8F); irradiated with 11 J/cm2 (L11); irradiated as in L11 + fluoride 1.23% (L11F). After laser irradiation the samples were submitted to a pH-cycling model for 9 days. The calcium and phosphorous contents in the de- and remineralization solutions were measured by means of inductively coupled plasma optical emission spectrometer – ICP-OES. Additionally intrapulpal temperature measurements were performed. The obtained data were analysed by means of ANOVA and Tukey's test (α = 0.05).

Results

In the demineralization solutions the groups L11F and GF presented significantly lower means of calcium and phosphorous losses than the control group; and in L11F means were significantly lower than in the fluoride group. Both irradiation parameters tested caused intrapulpal temperature increase below 2 °C.

Conclusion

It can be concluded that under the conditions of this study, CO2 laser irradiation (10.6 μm) with 11 J/cm2 (540 mJ and 10 Hz) of fluoride treated dentine surfaces decreases the loss of calcium and phosphorous in the demineralization process and does not cause excessive temperature increase inside the pulp chamber.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号