首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
基础医学   2篇
  2019年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Abstract

Objective: The aim of the present study was to evaluate the therapeutic potential of autologous DCs loaded with whole tumor cell lysate of CTVT generated under a simplified and rapid procedure in vitro production process, in a vulvar submucosal model of CTVT in dogs.

Materials and methods: We generated a model of intravulvar CTVT in dogs. A CTVT lysate antigen was prepared according to the method of 1-butanol and after administered with complete Freund's adjuvant via subcutaneous in female healthy dogs and challenge with CTVT cells to corroborate the immunogenicity. Short-time generated dendritic cell pulsed with CTVT whole-lysate was performed, and analyzed by FITC-dextran uptake assay and characterized using anti-canine monoclonal antibodies CD14, CD80, CD83, and DLAII by flow cytometry. Dendritic cell therapy was administered in a frequency of three times every 2 weeks when the CTVT had 4 months of growth and 89?±?5 cm diameter. The CD3+, CD4+ and CD8+ lymphocytes were determined by flow cytometry, and IFN-γ by ELISA assay.

Results and discussion: The administration of CTVT whole-lysate resulted in tumor prevention. The short-time generated dendritic cell pulsed with CTVT whole-lysate administration resulted in an efficient reduction and elimination of CTVT, probably due to the increase in lymphocyte populations (CD3+, CD4+, and CD8+), IFN-γ production and tumor infiltrating lymphocytes.

Conclusion: In conclusion, this study demonstrates the efficacy of immunotherapy based in short-time generated dendritic cell pulsed with CTVT whole-lysate for the treatment of CTVT, and offer veterinary oncologists new alternative therapies to treat this and another malignancy.  相似文献   
2.
Context: Exosomes secreted by tumor cells are a good source of cellular components that stimulate the immune response, such as alarmins (mRNA, tetraspanins (CD9, CD63, CD81), heat-shock proteins, major histocompatibility complex class I molecules) and tumor-associated antigens. These properties permit to pulsed dendritic cells in the immunotherapy for many cancers types. The aim of this study was to demonstrate the use of exosomes derived from canine transmissible venereal tumor (CTVT) as an antigen to pulsed dendritic cells and its administration in dogs with CTVT as treatment against this disease.

Material and methods: From primary culture of CTVT cells the exosomes were isolated and characterized by scanning electron microscopy assay, dot blot and protein quantification. The monocytes of each patient were differentiated to dendritic cells (DC) and pulsed with CTVT exosomes (CTVTE). Phagocytosis, tumor size, populations of lymphocytes and IFN-c levels were evaluated.

Results: The CTVTE showed a size around 90 nm. CD81, CD63, CD9 and Hsp70 were expressed. Monocytes showed an expression of 85.71% for CD14+, 12.3% for CD80+, 0.1% for CD83+ and 0.8% for DLA-II. In DC 5.1% for CD14+, 86.7% for CD80+, 90.1% for CD83+ and 92.6% for DLA-II and a phagocytosis of 63% was obtained by FITC Dextran test. No side effects were observed in the experimental groups with our therapy. Tumor regression was of 100% at the seventh week, as well as an increase in the level of IFN-γ (142 pg/ml), and CD4+ (28%) and CD8+ (34%) cell percentage.

Discusion and conclusion: These results have shown that DC pulsed with tumor exosomes induce regression of the TVT in dogs.  相似文献   

1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号