首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
基础医学   7篇
内科学   2篇
  2015年   1篇
  2013年   1篇
  2011年   2篇
  2006年   3篇
  2004年   1篇
  1987年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
2.
Summary. One DNA A (KA30) and five different DNA B components (KA21, KA22, KA27, KA28 and KA34) of a geminivirus, Mungbean yellow mosaic virus–Vigna (MYMV-Vig) were cloned from a pooled sample of field-infected Vigna mungo plants from Vamban, South India. MYMV-Vig DNA A (KA30) and one of the DNA B components (KA27) exhibited 97% and 95% sequence identities, respectively, to those of MYMV reported from Thailand. However, the DNA B components KA21, KA22, KA28 and KA34 exhibited only 71 to 72% sequence identity to MYMV DNA B. Co-existence of multiple DNA B components in field-infected V. mungo was proved by Southern and PCR analyses. Each of the five DNA B components was infective together with the DNA A upon agroinoculation. Agroinoculation with mixed cultures of Agrobacterium with partial dimers of DNA A and all five DNA Bs proved that all five DNA B components can co-infect a single V. mungo plant.A. S. K. and R. V. contributed equally to this work.  相似文献   
3.
Cassava mosaic disease is a major constraint to cassava cultivation worldwide. In India, the disease is caused by Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosaic virus (SLCMV). The Agrobacterium Ti plasmid virulence gene virE2, encoding a nuclear-localized, single-stranded DNA binding protein, was introduced into Nicotiana benthamiana to develop tolerance against SLCMV. Leaf discs of transgenic N. benthamiana plants, harboring the virE2 gene, complemented a virE2 mutation in A. tumefaciens and produced tumours. Three tested virE2 transgenic plants displayed reduction in disease symptoms upon agroinoculation with SLCMV DNA A and DNA B partial dimers. A pronounced reduction in viral DNA accumulation was observed in all three virE2 transgenic plants. Thus, virE2 is an effective candidate gene to develop tolerance against the cassava mosaic disease and possibly other DNA virus diseases.  相似文献   
4.
Agrobacterium tumefaciens transfers the T-DNA portion of its Ti plasmid to the nuclear genome of plant cells. Upon cocultivation of A. tumefaciens strain A348 with regenerating tobacco leaf protoplasts, restriction endonuclease fragments of the T-DNA were generated that are consistent with double-stranded cleavage of the T-DNA at the border sequences. The T-DNA border cleavage was also induced by acetosyringone, a compound that induces many of the virulence genes. T-DNA cleavage did not occur in Agrobacterium strains harboring Tn3-HoHo1 insertions in the virA, -D, or -G genes. Insertion mutations in virB, -C, or -E did not have any effect on the T-DNA cleavage. Complementation of the mutations in virA, -D, or -G with cosmids containing the respective wild-type genes restored the T-DNA cleavage. Since virA and -G are essential in regulating the expression of other vir genes in response to plant signal molecules, the virD gene product(s) appear to mediate double-stranded T-DNA border cleavage.  相似文献   
5.
Mungbean yellow mosaic virus-Vigna (MYMV) sequences cloned as partial dimers within the T-DNA of a binary vector were deleted at a high frequency upon conjugal mobilization from Escherichia coli into Agrobacterium tumefaciens. This deletion involving the genome-length viral DNA did not occur when the binary plasmid was inside E. coli and when the binary plasmid was introduced into Agrobacterium by electroporation. Deletions occurred in both DNA A and DNA B partial dimers. A minimum of 500-nt continuity on either side of the nonanucleotide in the duplicated common region is required for deletion. A. tumefaciens cells in which deletion was complete, grew as larger colonies reflecting a growth advantage. The small, slow-growing colonies eventually lost the genome-length viral sequences after a few more cycles of growth. Partial dimers in binary plasmids pGA472 and pBin19 with RK2 replicon underwent deletion while those in pPZP with pVS1 replicon did not undergo deletion. Deletion was observed in A. tumefaciens strains C58, A136, A348 and A281 with C58 chromosome background, but not in Ach5 and T37. Interestingly, deletion did not occur in A. tumefaciens strain AGL1 with a recA mutation in C58 chromosome, implying a clear role for recombination in deletion. These observations suggest the choice of Agrobacterium strains and binary vectors for agroinoculation of geminiviruses.  相似文献   
6.
Mungbean yellow mosaic virus-Vigna (MYMV-Vig) is a bipartite geminivirus that causes a severe yellow mosaic disease in blackgram. An assay was developed to study MYMV-Vig replication by agroinoculation of tobacco leaf discs with partial dimers of the virus. This assay, in a non-host model plant, was used to evaluate pathogen-derived resistance contributed by MYMV-Vig genes in transgenic plants. Viral DNA accumulation was optimum in tobacco leaf discs cultured for 10 days after infection with Agrobacterium tumefaciens strain Ach5 containing partial dimers of both DNA A and DNA B of MYMV-Vig. Transgenic tobacco plants with MYMV-Vig genes for coat protein (CP), replication-associated protein (Rep)-sense, Rep-antisense, truncated Rep (T-Rep), nuclear shuttle protein (NSP) and movement protein (MP) were generated. Leaf discs from transgenic tobacco plants, harbouring MYMV-Vig genes, were agroinoculated with partial dimers of MYMV-Vig and analyzed for viral DNA accumulation. The leaf discs from transgenic tobacco plants harbouring CP and MP genes supported the accumulation of higher levels of MYMV-Vig DNA. However, MYMV-Vig accumulation was inhibited in one transgenic plant harbouring the Rep-sense gene and in two plants harbouring the T-Rep gene. Northern analysis of these plants revealed a good correlation between expression of Rep or T-Rep genes and inhibition of MYMV-Vig accumulation.  相似文献   
7.
8.
Mungbean yellow mosaic virus-[India:Vigna] (MYMV-[IN:Vig]), a blackgram isolate of MYMV, has five variable and infective DNA B components of which KA22 and KA27 DNA Bs share only 72% nucleotide sequence identity between them. Agroinoculation of blackgram with partial dimers of DNA A and KA27 DNA B caused severe stunting and an inordinate delay in flowering. Interestingly, co-agroinoculation of KA27+KA22 DNA B components along with DNA A ameliorated severe stunting, rescued from the delay in flowering and caused the appearance of yellow mosaic symptom characteristic of KA22 DNA B. Post-agroinoculation of KA27 DNA B-infected blackgram plants with KA22 DNA B also resulted in the amelioration from severe stunting and in the alleviation from the delay in flowering. Alleviation from KA27 DNA B-type of symptom by co-infection or post-infection with KA22 DNA B did not result in a corresponding reduction in KA27 DNA B levels. Swapping of KA27 DNA B with the nuclear shuttle protein gene (NSP) of KA22 DNA B abolished severe stunting and caused the appearance of mild yellow symptom, suggesting that the NSP is the major symptom determinant in MYMV DNA B.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号