首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   17篇
基础医学   18篇
临床医学   1篇
内科学   14篇
神经病学   1篇
特种医学   6篇
外科学   62篇
肿瘤学   3篇
  2022年   3篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   10篇
  2015年   5篇
  2014年   10篇
  2013年   7篇
  2012年   8篇
  2011年   11篇
  2010年   12篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   8篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1972年   1篇
排序方式: 共有105条查询结果,搜索用时 31 毫秒
1.
The vulnerability of the Medtronic-Hall, Bj?rk-Shiley Monostrut, Duromedics, and St. Jude Medical valves to occluder immobilization by sutures was determined under static and pulsatile flow conditions. Variables were cardiac output, cross-sectional diameter of suture, type of suture (braided versus monofilament) and position of the offending suture along the circumference of the valve ring. Under static conditions, pressures, ranging from 40 to 340 mmHg and 10 to 170 mmHg, were required to decompress obstructed Medtronic-Hall and Bj?rk-Shiley Monostrut valves, respectively. As a result of different design characteristics and different occluder/orifice clearances the Medtronic-Hall valve showed its maximum opening pressure in case of interference with sutures at the axis of symmetry in both minor and major orifices, whereas for the Bj?rk-Shiley Monostrut valve this was reached in the minor orifice. Under pulsatile flow conditions, in case of interference with Prolene 2-0 suture, the Duromedics valve showed irregularly delayed opening and an opening pressure difference of 50 mmHg at a cardiac output of 8 L/min, whereas leaflet motion and pressure difference in the St. Jude Medical valve were undisturbed under similar conditions. The necessary pressure difference for opening the Medtronic Hall valve reached 44mmHg at a cardiac output of 8 L/min. High and low risk of extrinsic leaflet obstruction in the Duromedics and St. Jude Medical valves, respectively, is related to the design of the hinge mechanisms and the wedge angle of their leaflets (2 degrees versus 25 degrees). Precautionary principles in implantation of prosthetic heart valves are stressed to prevent the potentially lethal complication of occluder immobilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
Cardiopulmonary bypass is a well-established technique during open heart surgeries. However, neurological complications due to insufficient cerebral oxygen supply occur and the severe consequences must not be neglected. Recent computational fluid dynamics (CFD) studies showed that during axillary cannulation the cerebral perfusion is strongly affected by the distance between the cannula tip and the vertebral artery branch. In this study we use two modifications of the cannula design to analyze the flow characteristics by means of CFD and experimental validation with particle image velocimetry (PIV). One approach applies a spin to the blood stream with a helical surface in the cannula cross section. Another approach uses radial bores in a constricted cannula tip to split the outflow jet. The additional helicity improves the perfusion of the cerebral vessels and suppresses the blood suction in the right vertebral artery observed with a standard cannula. The cannula with a helix throughout the entire length changes the blood flow from ?124 to 32 mL/min in comparison with an unmodified design and has the lowest prediction of blood damage. Separating the blood stream does not deliver satisfying results. The PIV measurements validate the simulations and correspond with the velocity distribution as well as vortex locations.  相似文献   
3.
Mitral regurgitation (MR) is one of the most frequent valvular heart diseases. To assess MR severity, color Doppler imaging (CDI) is the clinical standard. However, inadequate reliability, poor reproducibility and heavy user-dependence are known limitations. A novel approach combining computational and experimental methods is currently under development aiming to improve the quantification. A flow chamber for a circulatory flow loop was developed. Three different orifices were used to mimic variations of MR. The flow field was recorded simultaneously by a 2D Doppler ultrasound transducer and Particle Image Velocimetry (PIV). Computational Fluid Dynamics (CFD) simulations were conducted using the same geometry and boundary conditions. The resulting computed velocity field was used to simulate synthetic Doppler signals. Comparison between PIV and CFD shows a high level of agreement. The simulated CDI exhibits the same characteristics as the recorded color Doppler images. The feasibility of the proposed combination of experimental and computational methods for the investigation of MR is shown and the numerical methods are successfully validated against the experiments. Furthermore, it is discussed how the approach can be used in the long run as a platform to improve the assessment of MR quantification.  相似文献   
4.
Rotary blood pumps (RBPs) have demonstrated considerable promise while treating heart failure patients, such that they are being placed at an earlier stage of the disease. These devices may therefore be required to operate for prolonged durations which yields the need for RBPs exhibiting high durability, reliability, and blood compatibility. Noncontacting bearings, utilizing magnetic and/or hydrodynamic suspension techniques, appear to provide a suitable solution to these challenges. Hydrodynamic suspension has the advantage that it does not need feedback control systems. Among various hydrodynamic bearing types, the circular journal bearing has the particular benefit of easy manufacturing. This study presents methods to evaluate the performance of short (length to diameter ratio <1) circular hydrodynamic journal bearings (HJBs) for RBPs. Analytical calculations with specific boundary conditions are presented to predict the rotor's eccentricity under equilibrium states and thus the related performance parameters such as load capacity, power loss, and shear rates. These results and boundary conditions were confirmed experimentally in a specially designed test set‐up. The bearing performance was found to correlate to analytical solutions using the full Sommerfeld boundary condition instead of the half Sommerfeld condition conventionally used for such applications. Geometrical and operational parameter variations showed that HJB designs with a short Sommerfeld Number SS >0.02 can provide sufficient fluid film thicknesses and low shear rates. The measurements were further used to evaluate the bearings' stability. The estimation of the stability threshold drawn in relation to a modified stability index and the equilibrium eccentricity of the rotor allows the prediction of stability for short circular HJB designs under full Sommerfeld condition.  相似文献   
5.
Improving the hemocompatibility of artificial implants by micro structuring their surfaces has shown promising results, but the mechanisms which lead to this improvement are not yet understood. Therefore, we built a test setup for real‐time visualization of platelet interaction with a plain and two micro structured surfaces. The micro structures, defined by the distance of the plain surface area between the structures, were chosen to be 3 and 30 μm, representing a positive and a negative effect on the hemocompatibility. The main part of the test setup was a flow chamber containing films of low density polyethylene (LDPE) with the differently structured surfaces. For different wall shear stresses, no considerable differences were observed in the platelet‐surface interaction for all surface types. Whereas, major differences in flow behavior were observed when comparing the surfaces to each other. The platelets “rolled” along the smooth surface, being in constant contact with the surface material. Although the platelets “rolled” over the surface with small structures as well, they were only in contact with the tips of the structure and therefore had less surface contact with the foreign material. The increased distance and height of the structures of the last surface led to a trapping of platelets between the structures. This resulted in a longer contact time with the foreign material as well as a larger contact area, which both increase the risk of platelet activation, adhesion, and finally clotting. Our results showed the mechanisms which lead to these effects and thus revealed why micro structuring of surfaces impacts the hemocompatibility. Furthermore, we established a test setup which can be used for future investigations on the platelet‐structure interactions.  相似文献   
6.
A physiological control algorithm is being developed to ensure an optimal physiological interaction between the ReinHeart total artificial heart (TAH) and the circulatory system. A key factor for that is the long‐term, accurate determination of the hemodynamic state of the cardiovascular system. This study presents a method to determine estimation models for predicting hemodynamic parameters (pump chamber filling and afterload) from both left and right cardiovascular circulations. The estimation models are based on linear regression models that correlate filling and afterload values with pump intrinsic parameters derived from measured values of motor current and piston position. Predictions for filling lie in average within 5% from actual values, predictions for systemic afterload (AoPmean, AoPsys) and mean pulmonary afterload (PAPmean) lie in average within 9% from actual values. Predictions for systolic pulmonary afterload (PAPsys) present an average deviation of 14%. The estimation models show satisfactory prediction and confidence intervals and are thus suitable to estimate hemodynamic parameters. This method and derived estimation models are a valuable alternative to implanted sensors and are an essential step for the development of a physiological control algorithm for a fully implantable TAH.  相似文献   
7.
To date, ventricular assist devices (VADs) have become accepted as a therapeutic solution for end‐stage heart failure patients when a donor heart is not available. Newer generation VADs allow for a significant reduction in size and an improvement in reliability. However, the invasive implantation still limits this technology to critically ill patients. Recently, expandable/deployable devices have been investigated as a potential solution for minimally invasive insertion. Such a device can be inserted percutaneously via peripheral vessels in a collapsed form and operated in an expanded form at the desired location. A common structure of such foldable pumps comprises a memory alloy skeleton covered by flexible polyurethane material. The material properties allow elastic deformation to achieve the folded position and withstand the hydrodynamic forces during operation; however, determining the optimal geometry for such a structure is a complex challenge. The numerical finite element method (FEM) is widely used and provides accurate structural analysis, but computation time is considerably high during the initial design stage where various geometries need to be examined. This article details a simplified two‐dimensional analytical method to estimate the mechanical stress and deformation of memory alloy skeletons. The method was applied in design examples including two popular types of blade skeletons of a foldable VAD. Furthermore, three force distributions were simulated to evaluate the strength of the structures under different loading conditions experienced during pump operation. The results were verified with FEM simulations. The proposed two‐dimensional method gives a close stress and deformation estimation compared with three‐dimensional FEM simulations. The results confirm the feasibility of such a simplified analytical approach to reveal priorities for structural optimization before time‐consuming FEM simulations, providing an effective tool in the initial structural design stage of foldable minimally invasive VADs.  相似文献   
8.
Journal of Artificial Organs - An in-vitro study was conducted to investigate the general feasibility of using only one pumping chamber of the SynCardia total artificial heart (TAH) as a...  相似文献   
9.
Extracorporeal membrane oxygenation (ECMO) is a well-established therapy for several lung and heart diseases in the field of neonatal and pediatric medicine (e.g., acute respiratory distress syndrome, congenital heart failure, cardiomyopathy). Current ECMO systems are typically composed of an oxygenator and a separate nonpulsatile blood pump. An oxygenator with an integrated pulsatile blood pump for small infant ECMO was developed, and this novel concept was tested regarding functionality and gas exchange rate. Pulsating silicone tubes (STs) were driven by air pressure and placed inside the cylindrical fiber bundle of an oxygenator to be used as a pump module. The findings of this study confirm that pumping blood with STs is a viable option for the future. The maximum gas exchange rate for oxygen is 48mL/min/L(blood) at a medium blood flow rate of about 300mL/min. Future design steps were identified to optimize the flow field through the fiber bundle to achieve a higher gas exchange rate. First, the packing density of the hollow-fiber bundle was lower than commercial oxygenators due to the manual manufacturing. By increasing this packing density, the gas exchange rate would increase accordingly. Second, distribution plates for a more uniform blood flow can be placed at the inlet and outlet of the oxygenator. Third, the hollow-fiber membranes can be individually placed to ensure equal distances between the surrounding hollow fibers.  相似文献   
10.
The operation of congenital heart defects in neonates often requires the use of heart-lung machines (HLMs) to provide perfusion and oxygenation. This is prevalently followed by serious complications inter alia caused by hemodilution and extrinsic blood contact surfaces. Thus, one goal of developing a HLM for neonates is the reduction of priming volume and contact surface. The currently available systems offer reasonable priming volumes for oxygenators, reservoirs, etc. However, the necessary tubing system contains the highest volumes within the whole system. This is due to the use of roller pumps; hence, the resulting placement of the complete HLM is between 1 and 2 m away from the operating table due to connective tubing between the components. Therefore, we pursued a novel approach for a miniaturized HLM (MiniHLM) by integrating all major system components in one single device. In particular, the MiniHLM is a HLM with the rotary blood pump centrically integrated into the oxygenator and a heat exchanger integrated into the cardiotomy reservoir which is directly connected to the pump inlet. Thus, tubing is only necessary between the patient and MiniHLM. A total priming volume of 102 mL (including arterial filter and a/v line) could be achieved. To validate the overall concept and the specific design we conducted several in vitro and in vivo test series. All tests confirm the novel concept of the MiniHLM. Its low priming volume and blood contact surface may significantly reduce known complications related to cardiopulmonary bypass in neonates (e.g., inflammatory reaction and capillary leak syndrome).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号