首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
  国内免费   8篇
儿科学   1篇
基础医学   17篇
临床医学   10篇
内科学   8篇
特种医学   1篇
外科学   3篇
综合类   5篇
  2022年   4篇
  2021年   4篇
  2019年   1篇
  2018年   1篇
  2015年   2篇
  2013年   2篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2009年   1篇
  2008年   5篇
  2007年   4篇
  2006年   1篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1992年   1篇
排序方式: 共有45条查询结果,搜索用时 596 毫秒
1.
部队甲型病毒性肝炎疫苗的接种策略   总被引:3,自引:0,他引:3  
目的 探讨部队甲肝疫苗接种的最佳策略。方法 应用决策树模型和成本效用分析方法。结果 部队官兵接种甲肝疫苗,先筛选后接种方案优于直接接种方案;采用先筛选后接种方案接种干部每增加一个DALY将产生168.23元的正效益,而新兵则需2792.30元的净投入。经灵敏度分析,该决策结果稳定,不随引入决策模型的各参数的变化而变化。结论 在当前条件下,部队接种甲肝疫苗宜首选先筛选后接种方案,优先接种干部人群。  相似文献   
2.
Human herpes simplex virus 1 (HSV-1) encephalitis can be caused by inborn errors of the TLR3 pathway, resulting in impairment of CNS cell-intrinsic antiviral immunity. Deficiencies of the TLR3 pathway impair cell-intrinsic immunity to vesicular stomatitis virus (VSV) and HSV-1 in fibroblasts, and to HSV-1 in cortical but not trigeminal neurons. The underlying molecular mechanism is thought to involve impaired IFN-α/β induction by the TLR3 recognition of dsRNA viral intermediates or by-products. However, we show here that human TLR3 controls constitutive levels of IFNB mRNA and secreted bioactive IFN-β protein, and thereby also controls constitutive mRNA levels for IFN-stimulated genes (ISGs) in fibroblasts. Tlr3–/– mouse embryonic fibroblasts also have lower basal ISG levels. Moreover, human TLR3 controls basal levels of IFN-β secretion and ISG mRNA in induced pluripotent stem cell–derived cortical neurons. Consistently, TLR3-deficient human fibroblasts and cortical neurons are vulnerable not only to both VSV and HSV-1, but also to several other families of viruses. The mechanism by which TLR3 restricts viral growth in human fibroblasts and cortical neurons in vitro and, by inference, by which the human CNS prevents infection by HSV-1 in vivo, is therefore based on the control of early viral infection by basal IFN-β immunity.  相似文献   
3.
Genetic variants underlying life-threatening diseases, being unlikely to be transmitted to the next generation, are gradually and selectively eliminated from the population through negative selection. We study the determinants of this evolutionary process in human genes underlying monogenic diseases by comparing various negative selection scores and an integrative approach, CoNeS, at 366 loci underlying inborn errors of immunity (IEI). We find that genes underlying autosomal dominant (AD) or X-linked IEI have stronger negative selection scores than those underlying autosomal recessive (AR) IEI, whose scores are not different from those of genes not known to be disease causing. Nevertheless, genes underlying AR IEI that are lethal before reproductive maturity with complete penetrance have stronger negative selection scores than other genes underlying AR IEI. We also show that genes underlying AD IEI by loss of function have stronger negative selection scores than genes underlying AD IEI by gain of function, while genes underlying AD IEI by haploinsufficiency are under stronger negative selection than other genes underlying AD IEI. These results are replicated in 1,140 genes underlying inborn errors of neurodevelopment. Finally, we propose a supervised classifier, SCoNeS, which predicts better than state-of-the-art approaches whether a gene is more likely to underlie an AD or AR disease. The clinical outcomes of monogenic inborn errors, together with their mode and mechanisms of inheritance, determine the levels of negative selection at their corresponding loci. Integrating scores of negative selection may facilitate the prioritization of candidate genes and variants in patients suspected to carry an inborn error.

Negative (or purifying) selection is the natural process by which deleterious alleles are selectively purged from the population (1). In diploid species, the strength of negative selection at a given locus is predicted to increase with decreasing fitness and increasing dominance of the genetic variants controlling traits: Variation causing early death in the heterozygous state are the least likely to be transmitted to the next generation, as their carriers have fewer offspring than noncarriers (2). Human genetic variants that cause severe diseases are, thus, expected to be the primary targets of negative selection, particularly for diseases affecting heterozygous individuals. In humans, several studies have ranked protein-coding genes according to their levels of negative selection (35). Nevertheless, the extent to which negative selection affects human disease-causing genes, and the factors determining its strength, remain largely unknown, particularly because our knowledge of the severity, mode, and mechanism of inheritance of the corresponding human diseases remains incomplete (3, 68).The strength of negative selection at a given gene has been traditionally approximated by comparing the coding sequence of the gene in a given species with that of one or several closely related species; it depends on the proportion of amino acid changes that have accumulated during evolution (911). With the advent of high-throughput sequencing, intraspecies metrics have been developed, based on the comparison of the probability of predicted loss-of-function (pLOF) mutations for a gene under a random model with the frequency of pLOF mutations observed in population databases (5, 12, 13), which capture the species-specific evolution of genes. Using an interspecies-based method and a hand-curated version of the Online Mendelian Inheritance in Man (hOMIM) database, a previous study elegantly showed that most human genes for which mutations cause highly penetrant diseases, including autosomal dominant (AD) diseases in particular, evolve under stronger negative selection than genes associated with complex disorders (6). However, other studies based on OMIM genes have reported conflicting results (3, 1417), probably due to the incompleteness and heterogeneity of the datasets used. Moreover, no study has yet addressed this problem with intraspecies metrics, even though it has been suggested that the choice of the reference species for interspecies metrics contributes to discrepancies across studies (6).We aimed to improve the identification of the drivers of negative selection acting on human disease-causing genes, by developing a negative selection score combining several informative intraspecies and interspecies statistics, focusing on inborn errors of immunity (IEI). IEI, previously known as primary immunodeficiencies (18), are genetic diseases that disrupt the development or function of human immunity. They form a large and expanding group of genetic diseases that has been widely studied, and they are well characterized physiologically (immunologically) and phenotypically (clinically) (1921). IEI are often symptomatic in early childhood, and at least until the turn of the 20th century and the introduction of antibiotics, most individuals with IEI probably died before reaching reproductive maturity. Accordingly, IEI genes have probably been under strong negative selection from the dawn of humankind until very recently. In this study, we investigated whether the severity of IEI and their mode and mechanism of inheritance have left signatures of negative selection of various intensities in the corresponding human genes. Furthermore, we validated our model on genes underlying inborn errors of neurodevelopment (IEND), another group of well-characterized severe genetic diseases.  相似文献   
4.
5.
AIM: To identify the two polymorphisms of microsomal triglyceride transfer protein (MTP) gene in the Chinese population and to explore their correlation with both hepatitis B virus (HBV) self-limited infection and persistent infection.
METHODS: A total of 316 subjects with self-limited HBV infection and 316 patients with persistent HBV infection (195 subjects without familial history), matched with age and sex, from the Chinese Han population were enrolled in this study. Polymorphisms of MTP at the promoter region -493 and at H297Q were determined by the allele specific polymerase chain reaction (PCR).
RESULTS: The ratio of males to females was 2.13:1 for each group and the average age in the self-limited and chronic infection groups was 38.36 and 38.28 years, respectively. None of the allelic distributions deviated significantly from that predicted by the Hardy-Weinberg equilibrium. There was a linkage disequilibrium between H297Q and -493G/T (D' = 0.77). As the χ^2 test was used, the genotype distribution of MTP-493G/T demonstrated a significant difference between the self-limited infection group and the entire chronic group or the chronic patients with no family history (χ^2 = 8.543, P = 0.015 and χ^2 = 7.199, P = 0.019). The allele distribution at the MTP-493 position also demonstrated a significant difference between the study groups without family history (χ^2 = 6.212, P = 0.013). The T allele emerged as a possible protective factor which may influence the outcomes of HBV infection (OR: 0.59; 95% CI: 0.389-0.897). CONCLUSION: The polymorphism of the MTP gene, T allele at -493, may be involved in determining the HBV infection outcomes, of which the mechanism needs to be further investigated.  相似文献   
6.
Journal of Clinical Immunology - Enterovirus A71 (EV71) causes a broad spectrum of childhood diseases, ranging from asymptomatic infection or self-limited hand-foot-and-mouth disease (HFMD) to...  相似文献   
7.
Journal of Clinical Immunology - Inborn errors of immunity (IEI) and autoantibodies to type I interferons (IFNs) underlie critical COVID-19 pneumonia in at least 15% of the patients, while the...  相似文献   
8.
Journal of Clinical Immunology - Coronavirus disease 2019 (COVID-19) exhibits a wide spectrum of clinical manifestations, ranging from asymptomatic to critical conditions. Understanding the...  相似文献   
9.
10.
Human interleukin (IL) 1 receptor–associated kinase 4 (IRAK-4) deficiency is a recently discovered primary immunodeficiency that impairs Toll/IL-1R immunity, except for the Toll-like receptor (TLR) 3– and TLR4–interferon (IFN)-a/b pathways. The clinical and immunological phenotype remains largely unknown. We diagnosed up to 28 patients with IRAK-4 deficiency, tested blood TLR responses for individual leukocyte subsets, and TLR responses for multiple cytokines. The patients' peripheral blood mononuclear cells (PBMCs) did not induce the 11 non-IFN cytokines tested upon activation with TLR agonists other than the nonspecific TLR3 agonist poly(I:C). The patients' individual cell subsets from both myeloid (granulocytes, monocytes, monocyte-derived dendritic cells [MDDCs], myeloid DCs [MDCs], and plasmacytoid DCs) and lymphoid (B, T, and NK cells) lineages did not respond to the TLR agonists that stimulated control cells, with the exception of residual responses to poly(I:C) and lipopolysaccharide in MDCs and MDDCs. Most patients (22 out of 28; 79%) suffered from invasive pneumococcal disease, which was often recurrent (13 out of 22; 59%). Other infections were rare, with the exception of severe staphylococcal disease (9 out of 28; 32%). Almost half of the patients died (12 out of 28; 43%). No death and no invasive infection occurred in patients older than 8 and 14 yr, respectively. The IRAK-4–dependent TLRs and IL-1Rs are therefore vital for childhood immunity to pyogenic bacteria, particularly Streptococcus pneumoniae. Conversely, IRAK-4–dependent human TLRs appear to play a redundant role in protective immunity to most infections, at most limited to childhood immunity to some pyogenic bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号