首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   0篇
基础医学   17篇
临床医学   4篇
内科学   1篇
神经病学   33篇
特种医学   1篇
外科学   4篇
药学   2篇
  2016年   2篇
  2013年   1篇
  2012年   4篇
  2011年   5篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  1999年   3篇
  1996年   1篇
  1993年   1篇
  1992年   4篇
  1991年   2篇
  1989年   3篇
  1988年   1篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1980年   2篇
  1979年   4篇
  1974年   1篇
  1971年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
1.
Summary Extracellular single-neuron recordings were obtained from electrophysiologically identified nigrostriatal neurons in chloral hydrate anesthetized rats, in order to test the hypothesis that excitatory amino acid receptors are involved in responses of these neurons to electrical stimulation of the pontine region where the pedunculopontine nucleus (PPN) is located. The effects of iontophoretic application of excitatory amino acids and their antagonists as well as of cholinergic antagonists were tested on the fast orthodromic excitation of nigrostriatal neurons evoked by stimulation of the PPN region. The N-methyl-D-aspartate (NMDA) receptor antagonist D-a-aminoadipic acid as well as the cholinergic receptor antagonists mecamylamine and atropine failed to suppress the synaptic excitation of nigral neurons. The NMDA receptor antagonist DL-2-amino-5-phosphonovalerate exerted a weak depressant action on the synaptic response in a few neurons only. On the contrary, the broad spectrum antagonists of excitatory amino acid receptors kynurenic acid and gamma-Dglutamyl-amino-methyl-sulphonate were found to block simultaneously both the synaptic excitation and the neuronal responses to iontophoretic pulses of glutamate while leaving unaffected the neuronal responses to local application of acetylcholine or carbachol. The competitive antagonist of non-NMDA receptors 6-cyano-2,3-dihy-droxy-7-nitro-quinoxaline suppressed the synaptic excitation at ejection currents which antagonized neuronal responses to quisqualate and kainate. These results suggest that PPN excitatory fibers synapsing onto pars compacta nigrostriatal neurons utilize an excitatory amino acid as a synaptic transmitter acting preferentially on non-NMDA receptors.  相似文献   
2.
In order to more comprehensively assess the role of the basal ganglia in the internal generation of movements, we studied the activity of neurons in the head of the caudate and in the rostral putamen in relation to the execution of movements. Monkeys performed self-initiated and stimulus-triggered arm reaching movements in separate blocks of trials. With stimulus-triggered movements, 217 striatal neurons increased their activity after the trigger stimulus (127 in caudate, 90 in putamen). Of these, 68 neurons showed time-locked responses to the trigger stimulus, with a median latency of 60 ms, that were independent of visual or auditory stimulus modalities. Three quarters of responses were conditional on a movement being performed. These responses may participate in neuronal processes through which the reception of a stimulus is translated into the execution of a behavioral reaction. Further, 44 neurons increased their activity before the earliest muscle activity without being clearly time-locked to the stimulus (148-324 ms before movement onset), 55 neurons were activated later before the movement, and 50 neurons were activated after movement onset. With self-initiated movements, 106 striatal neurons showed movement-related activity beginning up to 460 ms before movement onset (52 in caudate, 54 in putamen). Comparisons between the two types of movement were made on 53 neurons with premovement activity beginning more than 500 ms before self-initiated movements. Only one fifth of them also showed movement-related activity with stimulus-triggered movements, including trigger responses. Comparisons among 39 neurons with movement-related activity during self-initiated arm movements showed that about half of them also showed movement-related activity with stimulus-triggered movements. These data demonstrate a considerably segregated population of striatal neurons engaged in the internal generation of movements, whereas processes underlying the execution of movements appear to involve overlapping neuronal populations.  相似文献   
3.
4.
By passing wild type bovine viral diarrhoea virus (BVDV) in increasing concentrations of DPC-A69280-29, a thiazole urea class compound that inhibits BVDV replication, we were able to select several variants of BVDV that exhibited decreased susceptibility to this compound. When the non-structural genes of these variants were sequenced and compared with wild type, only one change was common to all the variants that also exhibited resistance to DPC-A69280-29 (>10-fold increase in IC50). This change was a T-to-A transversion at position 11198 of the BVDV genome, which would cause a predicted substitution of isoleucine for phenylalanine at amino acid 78 of the RNA-dependent RNA polymerase (RdRp). This substitution would occur in a region of the BVDV RdRp which has been proposed to be important for the formation of the RdRp homodimer that is essential for the activity of the enzyme. However, since DPC-69280-29 inhibits BVDV replication by interfering with the initiation of viral RNA synthesis, we discuss the possibility that this region of the BVDV RdRp also may play a role in the initiation process. Furthermore, since this region is located fairly close to the template RNA, we also propose that the role it plays may involve either template selection, stabilization or processivity.  相似文献   
5.
Cholinergic striatal interneurons play a crucial role in cognitive aspects of context-dependent motor behaviours. They are considered to correspond to the tonically active neurons (TANs) of the primate striatum, which phasically decrease their discharge at the presentation of reward-related sensory stimuli. The origin of this response is still poorly understood. Therefore, in the present paper, we have investigated whether synaptic changes establish in cholinergic interneurons from young rats that have learned a rewarded, externally cued sensorimotor task. Corticostriatal slices were prepared from both control and trained rats. No significant change in intrinsic membrane properties and evoked synaptic activity was observed in cholinergic interneurons, nor the responsiveness to exogenously applied dopaminergic and glutamatergic agonists was modified. Conversely, an increased occurrence of spontaneous bicuculline-sensitive depolarizing postsynaptic potentials (sDPSP) was recorded. The frequency of the GABAA-mediated sDPSP was increased in comparison to not-conditioned rats. Overall, these results suggest that after learning a rewarded sensorimotor paradigm an increased GABA influence develops on cholinergic interneurons. The origin of this effect might be searched in collaterals of GABAergic output spiny neurons as well as in GABAergic striatal interneurons impinging onto cholinergic interneurons. This intrastriatal mechanism might be involved in the phasic suppression of discharge of TANs at the presentation of reward-related sensory stimuli.  相似文献   
6.
7.
Within the striatum, the gaseous neurotransmitter nitric oxide (NO) is produced by a subclass of interneurons containing the neuronal NO synthase (nNOS). NO promotes the second messenger cGMP through the activation of the soluble guanyl cyclase (sGC) and plays a crucial role in the integration of glutamate (GLU) and DA transmission. The aim of this study was to characterize the impact of 6-hydroxyDA (6-OHDA) lesion of the rat nigrostriatal pathway on NO/cGMP system. In vivo extracellular single units recordings were performed under urethane anesthesia to avoid any potentially misleading contributions of cortically-driven changes on endogenous NO. Hence, no electrical extrastriatal stimulation was performed and great attention was paid to the effects of 3-morpholinosydnonimine (SIN-1, a NO donor), N(G)-nitro-L-arginine methyl ester (L-NAME, a nonselective NOS inhibitor) and Zaprinast (a PDE inhibitor) delivered by iontophoresis upon the main striatal phenotypes. The latter were operationally distinguished in silent medium spiny-like neurons (MSN), with negligible spontaneous activity but displaying glutamate-induced firing discharge at rest and spontaneously active neurons (SAN), representing to a large extent nonprojecting interneurons. SANs were excited by SIN-1 and Zaprinast while MSNs showed a clear inhibition during local iontophoretic application of SIN-1 and Zaprinast. In 6-OHDA animals, SIN-1-induced excitation in SANs was significantly increased (on the contrary, the inhibitory effect of L-NAME was less effective). Interestingly, in DA-denervated animals, a subclass of MSNs (40%) displayed a peculiar excitatory response to SIN-1. These findings support the notion of an inhibitory modulatory role exerted by endogenous NO on control striatal projection cells. In addition, these findings suggest a functional cross-talk between NO, spontaneously active interneurons, and projection neurons that becomes critical in the parkinsonian state.  相似文献   
8.
Lesions of the subthalamic nucleus (STN) in the rat are known to cause anticipated movements in behavioral tasks requiring a preparatory period before the execution of externally cued conditioned movements. In the present study, we describe the effects of lesions of the pedunculopontine nucleus (PPN), a structure located on the outflow of the STN to lower brainstem and spinal motor nuclei, on the anticipatory responding caused by a unilateral lesion of the STN in a delayed sensorimotor task. Rats were instructed to keep a lever pressed down by the presentation of a composite visual and acoustic signal, and were required to hold the lever pressed until a trigger stimulus occurred after an unpredictable delay. The trigger stimulus required the animals to release the lever and to press a second lever for food reinforcement. The task was evaluated according to analysis of movement parameters and errors made by the animals during the preparative and executive phases of the conditioned movement. An ibotenate lesion was placed into the STN in either side of the brain. This lesion was followed 3 weeks later by an ibotenate lesion of the PPN ipsilaterally to the STN previously lesioned. The results indicate that the anticipatory responding induced by the STN lesion was not alleviated by the subsequent PPN lesion. However, the animals bearing the combined lesion were severely impaired in conditioned responding to salient stimuli involved in the paradigm and showed side-specific lengthening of reaction and movement times without global motor impairments. The results suggest that the anticipatory responses caused by STN lesions do not require the intervention of the PPN and that the disruption of the dopaminergic nigrostriatal pathway following the combined lesion may be responsible for impairments observed.  相似文献   
9.
10.
The effect of apomorphine on the EEG of freely moving rats was studied. Apomorphine at the dose of 1 mg/kg caused stereotypy and a marked reduction of total sleep. On the contrary, acute subcutaneous administration of apomorphine at the dose of 100 microgram/kg, or less, markedly increased the amount of total sleep (corresponding mostly to synchronized sleep). Moreover, the infusion of apomorphine (80 microgram/kg/h) for 4 h doubled the duration of slow and REM sleep. The hypnotic effect of apomorphine was prevented by neuroleptics, such as pimozide, benzperidol and L-sulpiride, at doses which, per se, did not modify the EEG of the animals. These results suggest the existence in the CNS of DA receptors mediating sleep.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号