首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  国内免费   4篇
基础医学   3篇
临床医学   2篇
内科学   1篇
神经病学   7篇
外科学   3篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2008年   2篇
  2007年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
Axonal regeneration plays an important role in functional recovery after nervous system damage. However, after axonal injury in mammals, regeneration is often poor. The deletion of Krüppel-like factor-4 (Klf4) has been shown to promote axonal regeneration in retinal ganglion cells. However, the effects of Klf4 deletion on the corticospinal tract and peripheral nervous system are unknown. In this study, using a mouse model of sciatic nerve injury, we show that the expression of Klf4 in dorsal root ganglion sensory neurons was significantly reduced after peripheral axotomy, suggesting that the regeneration of the sciatic nerve is associated with Klf4. In vitro, dorsal root ganglion sensory neurons with Klf4 knockout exhibited significantly enhanced axonal regeneration. Furthermore, the regeneration of the sciatic nerve was enhanced in vivo following Klf4 knockout. Finally, AAV-Cre virus was used to knockout the Klf4 gene in the cortex. The deletion of Klf4 enhanced regeneration of the corticospinal tract in mice with spinal cord injury. Together, our findings suggest that regulating KLF4 activity in neurons is a potential strategy for promoting axonal regeneration and functional recovery after nervous system injury. This study was approved by the Animal Ethics Committee at Soochow University, China (approval No. SUDA20200316A01).

Chinese Library Classification No.R456; R741; Q344+.14  相似文献   
2.
3.
We investigated nerve regeneration following the repair of a segmental nerve defect induced by direct end-to-end neurorrhaphy after simultaneous gradual lengthening of both proximal and distal nerve stumps in rats. A 15-mm-long nerve segment was resected from the sciatic nerve of each rat. The proximal and distal nerve stumps, respectively, were directly lengthened at a rate of 1 mm/day using a custom-made external nerve-lengthening device. After being lengthened for 14 days, both nerve stumps were refreshed, and direct end-to-end neurorrhaphy was performed. For a control, 15-mm nerve grafting was performed immediately after nerve resection. Nerve regeneration was evaluated by motor nerve conduction velocity, muscle contraction force, and histological studies at 6, 8, and 14 weeks after initial nerve resection in both groups. As a result, at 8 and 14 weeks, the motor nerve conduction velocity was significantly higher in the nerve-lengthening group than in the autografting group. In addition, at 14 weeks, the tetanic force and wet weight of the gastrocnemius muscle were significantly higher in the nerve-lengthening group than in the autografting group. Histologically, the mean axonal diameter of myelinated nerve fibers and the total number of myelinated nerve fibers were also significantly higher in the nerve-lengthening group than in the autografting group for each evaluation period. It appears that the simultaneous gradual lengthening of both proximal and distal nerve stumps might have potential application in the repair of peripheral nerve defects.  相似文献   
4.
We investigated the effect of progesterone on the nerve during lengthening of the limb in rats. The sciatic nerves of rats were elongated by leg lengthening for ten days at 3 mm per day. On alternate days between the day after the operation and nerve dissection, the progesterone-treated group received subcutaneous injections of 1 mg progesterone in sesame oil and the control group received oil only. On the fifth, tenth and 17th day, the sciatic nerves were excised at the midpoint of the femur and the mRNA expression level of myelin protein P0 was analysed by quantitative real time polymerase chain reaction. On day 52 nodal length was examined by electron microscopy, followed by an examination of the compound muscle action potential (C-MAP) amplitude and the motor conduction velocity (MCV) of the tibial nerve on days 17 and 52. The P0 (a major myelin glycoprotein) mRNA expression level in the progesterone-treated group increased by 46.6% and 38.7% on days five and ten, respectively. On day 52, the nodal length in the progesterone-treated group was smaller than that in the control group, and the MCV of the progesterone-treated group had been restored to normal. Progesterone might accelerate the restoration of demyelination caused by nerve elongation by activating myelin synthesis.  相似文献   
5.
Axon growth is driven by the movement of a growth cone, a specialized sensory motile structure located at the tip of a growing neurite. Although stalled retraction bulbs have long been recognized as hallmarks of regeneration failure, mechanisms that control the formation and migration of nerve endings are only beginning to be unraveled. Recent studies point to microtubules as key determinants for such processes, and emerging evidence suggests that regulators of actin and microtubule dynamics in the growth cone might serve as attractive targets for controlling both the speed and trajectory of regenerating axons. This review discusses the potential of and recent progress in direct modulation of the growth cone machinery as a novel strategy to promote axon regeneration in the nervous system after injury.  相似文献   
6.
7.
8.
9.
Hur EM  Saijilafu  Lee BD  Kim SJ  Xu WL  Zhou FQ 《Genes & development》2011,25(18):1968-1981
Suppression of glycogen synthase kinase 3 (GSK3) activity in neurons yields pleiotropic outcomes, causing both axon growth promotion and inhibition. Previous studies have suggested that specific GSK3 substrates, such as adenomatous polyposis coli (APC) and collapsin response mediator protein 2 (CRMP2), support axon growth by regulating the stability of axonal microtubules (MTs), but the substrate(s) and mechanisms conveying axon growth inhibition remain elusive. Here we show that CLIP (cytoplasmic linker protein)-associated protein (CLASP), originally identified as a MT plus end-binding protein, displays both plus end-binding and lattice-binding activities in nerve growth cones, and reveal that the two MT-binding activities regulate axon growth in an opposing manner: The lattice-binding activity mediates axon growth inhibition induced by suppression of GSK3 activity via preventing MT protrusion into the growth cone periphery, whereas the plus end-binding property supports axon extension via stabilizing the growing ends of axonal MTs. We propose a model in which CLASP transduces GSK3 activity levels to differentially control axon growth by coordinating the stability and configuration of growth cone MTs.  相似文献   
10.
We investigated the effect of direct gradual stretching on the proximal nerve stump morphologically. A 10‐mm‐long nerve segment was resected from the sciatic nerve of a rat. The end of the proximal nerve stump was fixed to a small ring and the marking suture was placed at a point 1 mm proximal to the ring. Then, the nerve stump was lengthened at a rate of 1 mm/day via a stretching of the ring using an original external device. After a stretching of 20 days, the distance from the ring to the marking suture became 12 mm. Whereas large mature myelinated axons were observed in the proximal part of the marking, only small axons with thin myelin sheath were observed in the distal part, and the mean axonal diameter showed a significant difference between the two parts. Moreover, the mean internodal length was 172.4 ± 13.4 µm in the distal part of the marking and 1019.0 ± 56.2 µm in the proximal part. The internodal length also showed a significant difference between the two parts. Thus, the axonal diameter and internodal length were consistent with the characteristics of regenerating axons in the distal part. Furthermore, ultrastructural analysis also showed the histological characteristics of axonal regeneration. Thus, a transected proximal nerve stump may be lengthened by axonal regeneration during gradual stretching, and the stimulus of mechanical stretching may induce the growth of regenerating axons. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:1012–1017, 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号