首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180791篇
  免费   1333篇
  国内免费   5篇
耳鼻咽喉   1148篇
儿科学   6744篇
妇产科学   3100篇
基础医学   17209篇
口腔科学   1610篇
临床医学   13146篇
内科学   31732篇
皮肤病学   707篇
神经病学   16922篇
特种医学   9167篇
外科学   29378篇
综合类   2347篇
一般理论   3篇
预防医学   18798篇
眼科学   2815篇
药学   9883篇
中国医学   687篇
肿瘤学   16733篇
  2023年   37篇
  2022年   49篇
  2021年   129篇
  2020年   97篇
  2019年   134篇
  2018年   22069篇
  2017年   17464篇
  2016年   19623篇
  2015年   1071篇
  2014年   1012篇
  2013年   1084篇
  2012年   7426篇
  2011年   21489篇
  2010年   19044篇
  2009年   11742篇
  2008年   19897篇
  2007年   22089篇
  2006年   937篇
  2005年   2542篇
  2004年   3689篇
  2003年   4611篇
  2002年   2767篇
  2001年   303篇
  2000年   433篇
  1999年   207篇
  1998年   256篇
  1997年   243篇
  1996年   121篇
  1995年   135篇
  1994年   125篇
  1993年   87篇
  1992年   51篇
  1991年   103篇
  1990年   133篇
  1989年   89篇
  1988年   60篇
  1987年   51篇
  1986年   39篇
  1985年   42篇
  1984年   25篇
  1983年   25篇
  1982年   32篇
  1980年   42篇
  1970年   24篇
  1939年   23篇
  1938年   60篇
  1937年   25篇
  1934年   31篇
  1932年   58篇
  1930年   47篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Magnetic field generated by neuronal activity could alter magnetic resonance imaging (MRI) signals but detection of such signal is under debate. Previous researches proposed that magnitude signal change is below current detectable level, but phase signal change (PSC) may be measurable with current MRI systems. Optimal imaging parameters like echo time, voxel size and external field direction, could increase the probability of detection of this small signal change. We simulate a voxel of cortical column to determine effect of such parameters on PSC signal. We extended a laminar network model for somatosensory cortex to find neuronal current in each segment of pyramidal neurons (PN). 60,000 PNs of simulated network were positioned randomly in a voxel. Biot–savart law applied to calculate neuronal magnetic field and additional phase. The procedure repeated for eleven neuronal arrangements in the voxel. PSC signal variation with the echo time and voxel size was assessed. The simulated results show that PSC signal increases with echo time, especially 100/80 ms after stimulus for gradient echo/spin echo sequence. It can be up to 0.1 mrad for echo time = 175 ms and voxel size = 1.48 × 1.48 × 2.18 mm3. With echo time less than 25 ms after stimulus, it was just acquired effects of physiological noise on PSC signal. The absolute value of the signal increased with decrease of voxel size, but its components had complex variation. External field orthogonal to local surface of cortex maximizes the signal. Expected PSC signal for tactile detection in the somatosensory cortex increase with echo time and have no oscillation.  相似文献   
3.
4.
5.
ResearchGate is a world wide web for scientists and researchers to share papers, ask and answer questions, and find collaborators. As one of the more than 15 million members, the author uploads research output and reads and responds to some of the questions raised, which are related to type 2 diabetes. In that way, he noticed a serious gap of knowledge of this disease among medical professionals over recent decades. The main aim of the current study is to remedy this situation through providing a comprehensive review on recent developments in biochemistry and molecular biology, which can be helpful for the scientific understanding of the molecular nature of type 2 diabetes. To fill up the shortcomings in the curricula of medical education, and to familiarize the medical community with a new concept of the onset of type 2 diabetes, items are discussed like: Insulin resistance, glucose effectiveness, insulin sensitivity, cell membranes, membrane flexibility, unsaturation index (UI; number of carbon-carbon double bonds per 100 acyl chains of membrane phospholipids), slow-down principle, effects of temperature acclimation on phospholipid membrane composition, free fatty acids, energy transport, onset of type 2 diabetes, metformin, and exercise. Based on the reviewed data, a new model is presented with proposed steps in the development of type 2 diabetes, a disease arising as a result of a hypothetical hereditary anomaly, which causes hyperthermia in and around the mitochondria. Hyperthermia is counterbalanced by the slow-down principle, which lowers the amount of carbon-carbon double bonds of membrane phospholipid acyl chains. The accompanying reduction in the UI lowers membrane flexibility, promotes a redistribution of the lateral pressure in cell membranes, and thereby reduces the glucose transporter protein pore diameter of the transmembrane glucose transport channel of all Class I GLUT proteins. These events will set up a reduction in transmembrane glucose transport. So, a new blood glucose regulation system, effective in type 2 diabetes and its prediabetic phase, is based on variations in the acyl composition of phospholipids and operates independent of changes in insulin and glucose concentration. UI assessment is currently arising as a promising analytical technology for a membrane flexibility analysis. An increase in mitochondrial heat production plays a pivotal role in the existence of this regulation system.  相似文献   
6.
Farnesyltransferase (FTase) is one of the prenyltransferase family enzymes that catalyse the transfer of 15-membered isoprenoid (farnesyl) moiety to the cysteine of CAAX motif-containing proteins including Rho and Ras family of G proteins. Inhibitors of FTase act as drugs for cancer, malaria, progeria and other diseases. In the present investigation, we have developed two structure-based pharmacophore models from protein–ligand complex (3E33 and 3E37) obtained from the protein data bank. Molecular dynamics (MD) simulations were performed on the complexes, and different conformers of the same complex were generated. These conformers were undergone protein–ligand interaction fingerprint (PLIF) analysis, and the fingerprint bits have been used for structure-based pharmacophore model development. The PLIF results showed that Lys164, Tyr166, TrpB106 and TyrB361 are the major interacting residues in both the complexes. The RMSD and RMSF analyses on the MD-simulated systems showed that the absence of FPP in the complex 3E37 has significant effect in the conformational changes of the ligands. During this conformational change, some interactions between the protein and the ligands are lost, but regained after some simulations (after 2 ns). The structure-based pharmacophore models showed that the hydrophobic and acceptor contours are predominantly present in the models. The pharmacophore models were validated using reference compounds, which significantly identified as HITs with smaller RMSD values. The developed structure-based pharmacophore models are significant, and the methodology used in this study is novel from the existing methods (the original X-ray crystallographic coordination of the ligands is used for the model building). In our study, along with the original coordination of the ligand, different conformers of the same complex (protein–ligand) are used. It concluded that the developed methodology is significant for the virtual screening of novel molecules on different targets.  相似文献   
7.
This paper takes a somewhat slant perspective on flourishing and care in the context of suffering, death and dying, arguing that care in this context consists principally of ‘acts of work and courage that enable flourishing’. Starting with the perception that individuals, society and health care professionals have become dulled to death and the process of dying in Western advanced health systems, it suggests that for flourishing to occur, both of these aspects of life need to be faced more directly. The last days of life need to be ‘undulled’. Reflections upon the experiences of the author as carer and daughter in the face of her mother’s experience of death are used as basis for making suggestions about how care systems and professionals might better assist people in dealing with ‘the most grown up thing’ humans ever do, which is to die.  相似文献   
8.
9.
Advancing nanomedicines from concept to clinic requires integration of new science with traditional pharmaceutical development. The medical and commercial success of nanomedicines is greatly facilitated when those charged with developing nanomedicines are cognizant of the unique opportunities and technical challenges that these products present. These individuals must also be knowledgeable about the processes of clinical and product development, including regulatory considerations, to maximize the odds for successful product registration. This article outlines these topics with a goal to accelerate the combination of academic innovation with collaborative industrial scientists who understand pharmaceutical development and regulatory approval requirements—only together can they realize the full potential of nanomedicines for patients.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号