首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   5篇
基础医学   15篇
临床医学   14篇
内科学   9篇
神经病学   9篇
特种医学   13篇
外科学   8篇
预防医学   6篇
药学   4篇
肿瘤学   1篇
  2020年   1篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   5篇
  2011年   4篇
  2010年   1篇
  2009年   9篇
  2008年   10篇
  2007年   10篇
  2006年   7篇
  2005年   4篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有79条查询结果,搜索用时 31 毫秒
1.
Hananyah  Glaubman  Israel  Orbach  Ygal  Gross  Orit  Aviram  Irene  Frieder  Meira  Frieman  Odeda  Pelled 《Psychophysiology》1979,16(5):467-470
The hypothesis that a load on focal attention prior to sleep results in subsequent changes in sleep patterns was investigated. Eight females and 2 males slept in the laboratory for 4 nights: 2 adaptation nights, 1 experimental night preceded by a focal attention load, and 1 control night preceded by relaxed activity. On the experimental night, time in bed, total sleep time, and stage REM sleep were significantly longer than on the control night. The results support the hypothesis and suggest that attention during REM sleep has a unique character.  相似文献   
2.
3.
We have recently demonstrated that incubation of cultured rat hippocampal neurons with conduritol -epoxide (CBE), an inhibitor of glucocerebrosidase, the enzyme defective in Gaucher disease, results in changes in intracellular morphology and in functional calcium stores. Changes in levels of functional calcium stores are directly related to neuronal cell death. We now show that neurons incubated with either CBE or a non-hydrolysable analogue of GlcCer (glucosylthioceramide), are more sensitive to the toxic effects of high concentrations of glutamate and of a variety of metabolic inhibitors. A linear relationship exists between level of accumulation of GlcCer and the extent of neuronal cell death. The deleterious effects of elevated GlcCer levels can be completely reversed by addition of human glucocerebrosidase (imiglucerase) to the culture medium. Imiglucerase is internalized to lysosomes, where it presumably degrades excess GlcCer. This suggests that the limited success of enzyme replacement therapy in neuronopathic forms of Gaucher disease is not due to lack of efficacy of glucocerebroside in degrading GlcCer in neurons of the central nervous system, and adds impetus to attempts to develop ways to efficiently deliver glucocerebrosidase to the brains of neurologically compromised Gaucher disease patients.  相似文献   
4.

Background  

Consumption of plant sterol (PS) esters lower low-density lipoprotein (LDL)-cholesterol levels by suppressing intestinal absorption of cholesterol. Commercially available PS are mainly esterified to omega-6 fatty acid (FA), such as sunflower oil (SO) FA. Emerging trends include using other sources such as olive oil (OO) or omega-3 FA from fish oil (FO), known to exert potent hypotriglyceridemic effects. Our objective was to compare the actions of different FA esterified to PS on blood lipids, carotenoid bioavailability as well as inflammatory and coagulation markers.  相似文献   
5.
Mesenchymal stem cells for bone gene therapy and tissue engineering   总被引:11,自引:0,他引:11  
Mesenchymal Stem Cells (MSCs) are adult stem cells that constitute a variety of adult tissues. MSCs maintain self-renewal ability with the ability to give rise to different mesenchymal cells, and are therefore responsible in part, for the regenerative capacity of mesenchymal tissues. MSCs throughout a variety of species were found to be able to differentiate to several mesenchymal tissues including: bone, cartilage, stroma, adipose, connective tissue, muscle and tendon. MSCs are relatively easily isolated from the bone marrow and expanded in vitro. It was found that MSCs play an important role in bone physiology and hematopoiesis, and in part participate in the pathophysiology related to bone diseases, mainly osteoporosis. MSCs were widely used in experimental studies in vivo, and were shown to form mesenchymal tissues. These discovered features have made MSCs good candidates for the development of various therapeutic modalities aimed to regenerate mesenchymal tissues, mainly bone. The more important approaches currently utilizing MSCs are gene therapy and tissue engineering. Both exploit the current knowledge in molecular biology and biomaterial science in order to direct MSCs to differentiate in vivo to desired lineages and tissues. Better understanding of the molecular mechanism directing the differentiation of MSCs, will eventually allow us to properly manipulate MSCs both in vivo and ex vivo to allow the regeneration of complex tissues and organs.  相似文献   
6.
7.
In order to investigate intervertebral disc (IVD) degeneration and repair, a quantitative non‐invasive tool is needed. Various MRI methods including qCPMG, which yields dipolar echo relaxation time (TDE), magnetization transfer contrast (MTC), and 1H and 2H double quantum filtered (DQF) MRI were used in the present work to monitor changes in rat IVD after ablation of the nucleus pulposus (NP), serving as a model of severe IVD degeneration. In the intact IVD, a clear distinction between the annulus fibrosus (AF) and the NP is obtained on T2 and TDE weighted images as well as on MTC maps, reflecting the high concentration of ordered collagen fibers in the AF. After ablation of the NP, the distinction between the compartments is lost. T2 and TDE relaxation times are short throughout the disc and MTC is high. 1H and 2H DQF signal, which in intact discs is obtained only for the AF, is now observable throughout the tissue. These results indicate that after ablation, there is an ingression of collagen fibers from the AF into the area that was previously occupied by the NP, as was confirmed by histology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
8.
Osteoporosis affects more than 200 million people worldwide leading to more than 2 million fractures in the United States alone. Unfortunately, surgical treatment is limited in patients with low bone mass. Parathyroid hormone (PTH) was shown to induce fracture repair in animals by activating mesenchymal stem cells (MSCs). However, it would be less effective in patients with fewer and/or dysfunctional MSCs due to aging and comorbidities. To address this, we evaluated the efficacy of combination i.v. MSC and PTH therapy versus monotherapy and untreated controls, in a rat model of osteoporotic vertebral bone defects. The results demonstrated that combination therapy significantly increased new bone formation versus monotherapies and no treatment by 2 weeks (P < 0.05). Mechanistically, we found that PTH significantly enhanced MSC migration to the lumbar region, where the MSCs differentiated into bone-forming cells. Finally, we used allogeneic porcine MSCs and observed similar findings in a clinically relevant minipig model of vertebral defects. Collectively, these results demonstrate that in addition to its anabolic effects, PTH functions as an adjuvant to i.v. MSC therapy by enhancing migration to heal bone loss. This systemic approach could be attractive for various fragility fractures, especially using allogeneic cells that do not require invasive tissue harvest.  相似文献   
9.
Molecular targets for tendon neoformation   总被引:3,自引:1,他引:2       下载免费PDF全文
Tendons and ligaments are unique forms of connective tissue that are considered an integral part of the musculoskeletal system. The ultimate function of tendon is to connect muscles to bones and to conduct the forces generated by muscle contraction into movements of the joints, whereas ligaments connect bone to bone and provide joint stabilization. Unfortunately, the almost acellular and collagen I-rich structure of tendons and ligaments makes them very poorly regenerating tissues. Injured tendons and ligaments are considered a major clinical challenge in orthopedic and sports medicine. This Review discusses the several factors that might serve as molecular targets that upon activation can enhance or lead to tendon neoformation.  相似文献   
10.
Detection of cortical laminar architecture using manganese-enhanced MRI   总被引:1,自引:0,他引:1  
Changes in manganese-enhanced MRI (MEMRI) contrast across the rodent somatosensory cortex were compared to the cortical laminae as identified by tissue histology and administration of an anatomical tracer to cortex and thalamus. Across the cortical thickness, MEMRI signal intensity was low in layer I, increased in layer II, decreased in layer III until mid-layer IV, and increased again, peaking in layer V, before decreasing through layer VI. The reeler mouse mutant was used to confirm that the cortical alternation in MEMRI contrast was related to laminar architecture. Unlike in wild-type mice, the reeler cortex showed no appreciable changes in MEMRI signal, consistent with absence of cortical laminae in histological slides. The tract tracing ability of MEMRI was used to further confirm assignments and demonstrate laminar specificity. Twelve to 16 h after stereotaxic injections of MnCl(2) to the ventroposterior thalamic nuclei, an overall increase in signal intensity was detected in primary somatosensory cortex compared to other brain regions. Maximum intensity projection images revealed a distinctly bright stripe located 600-700 microm below the pial surface, in layer IV. The data show that both systemic and tract tracing forms of MEMRI are useful for studying laminar architecture in the brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号