首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
基础医学   6篇
神经病学   2篇
  2001年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
2.
Extracellular pH transients were evoked in rat hippocampal brain slices by activation of a monosynaptic inhibitory pathway following pharmacological blockade of glutaminergic transmission. Repetitive stimulation in stratum radiatum near the recording site in stratum pyramidale evoked an immediate alkaline shift which was potentiated by pentobarbital and blocked by picrotoxin but not by 2-hydroxy-saclofen. Benzolamide, a poorly permeant inhibitor of carbonic anhydrase (CA), and prontosil-dextran 5000, a macromolecular CA inhibitor, abolished the alkaline transients evoked by stimulation and by exogenous GABA. Thus an extracellular CA is involved in regulating interstitial pH in brain, and the stimulation-induced alkaline transients are caused by net influx of CO2 into CA1 neurons in response to efflux of bicarbonate across postsynaptic GABAA receptor channels.  相似文献   
3.
4.
The effect of dexamethasone on exercise-induced adrenocorticotropin (ACTH) secretion and dental analgesia was studied in healthy human subjects. Different levels of exercise (100–200 W) were produced by a cycle ergometer. Dental pain thresholds were tested with a constant current stimulator. Dental pain thresholds were elevated with increasing work loads, and the elevation was still significant 30 min after the end of the exercise. Dexamethasone produced a significant reversal of exercise-induced pain threshold elevations concomitantly with the suppression of exercise-induced ACTH release. The results suggest that the corticotropin releasing factor-ACTH axis is involved in the exercise-induced analgesia.  相似文献   
5.
Summary The effect of dynamic cycle ergometer exercise and isometric leg exercise on skin sensitivity was studied in man. Exercise was performed at different loads. Cutaneous sensitivity to innocuous and noxious thermal stimuli was tested using a contact thermostimulator and sensitivity to tactile stimuli was tested using electrical stimuli. During isometric exercise a segmental (the exercising limb), but not a multisegmental, phasic decrease of cutaneous thermal sensitivity to innocuous stimuli was found. At the isometric forces used the effect on tactile and heat pain sensitivity was not significant. During dynamic exercise a multisegmental, load-dependent decrease of sensitivity in all tested sensory modalities was found and this attenuation disappeared gradually after the end of exercise. In contrast to isometric exercise, the decrease of sensitivity produced by dynamic exercise was most evident in tactile sensitivity. The size of the stimulus area (7.9 vs 11.8 cm2) did not have a significant effect on the magnitude of the exercise-induced decrease of cutaneous thermal sensitivity to innocuous stimuli. It was concluded that underlying the modulation of skin sensitivity by dynamic and isometric exercise were mechanisms that were different, at least to a small extent. Isometric exercise produced a segmental modulation of skin sensitivity due to central neuronal mechanisms, independent of exercise-induced stress. Exercise-induced stress could have caused the modulation of skin sensitivity by dynamic exercise.  相似文献   
6.
7.
8.
We investigated the pathophysiological mechanisms of glutamate-induced delayed neuronal damage in rat hippocampal slice cultures [Stoppini et al. (1991) J. Neurosci. Methods 37, 173-182], with propidium iodide as a marker of cell death. Exposure of the cultures to growth medium containing 10 mM glutamate for 30 min resulted in a slowly developing degeneration of hippocampal principal cells, starting from the medial end of the CA1 region and reaching the dentate gyrus by 48 h. By 24 h, most pyramidal cells in CA1 were damaged. An acute phase of degeneration preceded the delayed damage at 2-6 h, affecting cells in a spatially diffuse manner. When tetrodotoxin (0.5 microM) was present during the glutamate insult, a marked protection (mean 57%, P<0.001) of the CA1 damage was observed. Rather strikingly, when tetrodotoxin was applied immediately following or even with a delay of 30 min after the insult, a similar amount of protection was achieved. In field recordings carried out after the insult, the glutamate-treated slices exhibited spontaneously occurring negative shifts with a duration of 1-10 s and an amplitude of up to 400 microV in the CA3 region, whereas the control slices were always quiescent. Taken together, the results suggest that post-insult neuronal network activity, rather than the direct action of exogenous glutamate, is a major cause of delayed CA1 pyramidal cell death in the organotypic slices. These observations may have implications in the design of neuroprotective strategies for the treatment of brain traumas which are accompanied by delayed and/or distal neuronal damage.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号