首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
基础医学   8篇
内科学   1篇
神经病学   2篇
外科学   1篇
药学   1篇
  2012年   1篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1995年   1篇
  1991年   2篇
排序方式: 共有13条查询结果,搜索用时 125 毫秒
1.
TCR repertoire in early fetal mouse thymus   总被引:1,自引:0,他引:1  
We investigated the rearrangement and expression of TCR genesin mouse fetal thymus organ culture, a system that avoids subsequententry of hematopoietic precursor cells. The first observablerearranged TCR gene was homogeneous V2-J2, detectable as earlyas fetal day 11 (d11) in the thymic primordla. The productiveTCR was homogeneous V5-J1, first detectable in d13 thymocytes,followed by adult-type TCR (V4 and V7). Sequence analysis ofTCR revealed five types of V-J junctional sequences. In thevery early stage, a homogeneous V-J junction is generated viaa short homology sequence in the coding region (Type I), whilea short homology sequence in the P-nucleotlde rather than thecoding region is used in the following stage (Type II). In thelater embryonic stages, diverse V-J junctions are generatedby well-known mechanisms, such as P-nucleotide (Type III), N-regioninsertion (Type IV) or trimming of the coding ends (Type V).These findings suggest that the generation of homogeneous TCR (V2 and V5) in the early fetal stages is due to the intrinsicrearrangement mechanisms and is in stage specific manner.  相似文献   
2.
Mice lacking either bombesin receptor subtype (BRS)-3 or gastrin-releasing peptide receptor (GRP-R) exhibit feeding abnormalities. However, it is unclear how these receptors are associated with feeding regulation. In BRS-3-deficient mice, we found hyperphagia, subsequent hyperleptinemia, and brain leptin resistance that occurred after the onset of obesity. To explore the cause of this phenomenon, we examined changes in feeding responses to appetite-related neuropeptides in BRS-3-deficient, GRP-R-deficient, and wild-type littermate mice. Among orexigenic neuropeptides, the hyperphagic response to melanin-concentrating hormone (MCH) was significantly enhanced in BRS-3-deficient mice but not in GRP-R-deficient mice. In addition, the levels of MCH-R and prepro-MCH mRNAs in the hypothalamus of BRS-3-deficient mice were significantly more elevated than those of wild-type littermates. There was no significant difference in feeding between BRS-3-deficient and wild-type littermate mice after treatment with bombesin (BN), although the hypophagic response to low-dose BN was significantly suppressed in the GRP-R-deficient mice. These results suggest that upregulation of MCH-R and MCH triggers hyperphagia in BRS-3-deficient mice. From these results, we assume that the BRS-3 gene deletion upsets the mechanism by which leptin decreases the expression of MCH-R and that this effect may be mediated through neural networks independent of BN-related peptides such as GRP-R.  相似文献   
3.
Gastrin-releasing peptide-preferring and neuromedin B-preferring receptors, members of the bombesin-like peptide receptor subfamily, are reported to regulate proliferation, migration and differentiation. Since they are expressed in developing brain, we postulated that the gastrin-releasing peptide-preferring and neuromedin B-preferring receptors might be involved in normal brain development. Here we examined the effects of the overexpressions of the gastrin-releasing peptide-preferring and neuromedin B-preferring receptors on chick brain development in vivo using a retrovirus. In the overexpressed exogenous gastrin-releasing peptide-preferring receptor brain, we found laminar disorganization in the telencephalon, tectum and particularly in the cerebellum with severe atrophy. Processes of the radial glial cells in the telencephalon and optic tectum, as well as the projections of the Bergmann glia in the cerebellum were distorted, which might disturb normal cell migration. Despite the atrophy of the cerebellum, densely-stained proliferating cell nuclear antigen- and phospho-histone H3-positive cells increased in number. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells also increased in the cerebellum, suggesting that the ectopically proliferating cells were subjected to apoptosis. Glial fibrillary acidic protein-positive cells also increased in the hyperpallium accessorium and in the outer layers of the tectum. We also found smaller and spindle-shaped cells which resembled undifferentiated embryonic tumor cells. On the other hand, the layer structures of the neuromedin B-preferring receptors overexpressed brain were well organized and developed, and the size of brain was generally enlarged. These results indicated that although the gastrin-releasing peptide-preferring and neuromedin B-preferring receptors are involved in normal brain development, both receptors contribute and exert their effects differently.  相似文献   
4.
In previous experiments, we have demonstrated that limb buds engrafted during embryonic life at E4, between MHC-mismatched chick embryos, are not only tolerated after birth, but induce in the recipient a state of split tolerance toward cells expressing the donor MHC haplotype: donor's skin grafts are permanently tolerated while a proliferative response of host's T cells is generated in MLR by donor-type blood cells. If the same experiment is performed, using quail embryo as a donor and chick as a recipient, acute rejection of the quail limb starts during the first two weeks after birth, thus suggesting that the peripheral type of tolerance induced in these experiments can be obtained only in allogeneic but not in xenogeneic combinations. We report here the unexpected result that when a chick limb bud is grafted into a quail at E4, it is tolerated and, like allogeneic grafts in chickens, induces adult skin-graft tolerance without modifying the MLR response. Similar results were obtained with grafts from another closely related species of bird, the guinea fowl from the Phasianidae family. In contrast, xenogeneic combinations involving more distant species (chick and quail as recipients and duck, an Anatidae, as donor) resulted in strong and early rejection from both recipients. As a whole, quails exhibit a greater ability than the chick to become tolerant to antigens presented peripherally from early developmental stages. In adult quails, however, skin grafts performed in either direction (i.e., quail to chick or the reverse) are rejected according to a similar temporal pattern. Moreover, lymphocytes of both species are able to respond equally well to quail or chick IL-2. Several hypotheses are envisaged to account for these observations. It seems likely that this type of tolerance is directly related to antigenic load because the load in chick to quail wing chimeras is larger than that in quail to chick chimeras. This view is supported by the protracted delay in graft rejection observed when two quail wing buds instead of one are grafted into chickens.  相似文献   
5.
Bombesin (BN)-like peptide receptors are known to be essential to the regulation of not only homeostasis, including feeding behavior, but also of emotional systems in mammal. Recently, two novel BN receptors, chicken BN-like peptide receptor subtype-3.5 (chBRS-3.5) and gastrin-releasing peptide receptor (chGRP-R), have been identified. Here, we report the localizations of these receptors' mRNAs in the chick brain through development using in situ hybridization. First, chBRS-3.5 mRNA signals were found in the dorsal ventricular ridge at embryonic day (ED) 9. Strong signals were observed in the hyperpallium accessorium, nidopallium and nucleus basorostralis pallii, and moderate signals were found in the hippocampus, cortex piriformis, hyperpallium intercalatum, area temporo-parieto-occipitalis, nucleus striae terminalis lateralis, nucleus olfactorius anterior and organum septi lateralis at ED16. This wide expression in the pallium persisted during posthatch periods. Abundant expressions in the hyperpallium, nidopallium, considered to be similar to the mammalian cortex, as well as in the hippocampus, indicate participation of these molecules in the processing of sensory information, motor function, learning and memory. Telencephalic areas devoid of chBRS-3.5 signals were the entopallium, arcopallium anterius, globus pallidus, nucleus intrapeduncularis, tuberculum olfactorius, nucleus septalis lateralis, hypothalamic and thalamic areas. In contrast to chBRS-3.5, chGRP-R mRNA signals were found in the pallidum at ED5 and 9. At ED16, chGRP-R mRNA signals were localized in the medial striatum and hypothalamus. GRP-R expression in the hypothalamic region was phylogenically conserved. Thus, chBRS-3.5 mRNA signals were distributed in a broader region and were more intense than chGRP-R mRNA. Taken together, chGRP-R and chBRS-3.5 mRNA occurred in similar regions of mammals that express GRP-R. BN/GRP-immunoreactive neurons and varicosities were found mainly in the pallium, especially in the hyperpallium accessorium and nidopallium, and this distribution coincided with that of chBRS-3.5 mRNA. This result suggests that the endogenous ligands for chBRS-3.5 were likely BN-like peptides produced in the pallium.  相似文献   
6.
The level of thyrotropin (TSH) secretion is determined by the balance of TSH-releasing hormone (TRH) and thyroid hormones. However, neuromedin B (NB), a bombesin-like peptide, highly concentrated in the pituitary, has been postulated to be a tonic inhibitor of TSH secretion. We studied the pituitary-thyroid axis in adult male mice lacking NB receptor (NBR-KO) and their wild-type (WT) littermates. At basal state, NBR-KO mice presented serum TSH slightly higher than WT (18%, P< 0.05), normal intra-pituitary TSH content, and no significant changes in alpha and beta TSH mRNA levels. Serum thyroxine was normal but serum triiodothyronine (T3) was reduced by 24% (P< 0.01) in NBR-KO mice. Pituitaries of NBR-KO mice exhibited no alteration in prolactin mRNA expression but type I and II deiodinase mRNA levels were reduced by 53 and 42% respectively (P< 0.05), while TRH receptor mRNA levels were importantly increased (78%, P< 0.05). The TSH-releasing effect of TRH was significantly higher in NBR-KO than in WT mice (7.1-and 4.0-fold respectively), but, while WT mice presented a 27% increase in serum T3 (P< 0.05) after TRH, NBR-KO mice showed no change in serum T3 after TRH. NBR-KO mice did not respond to exogenous NB, while WT showed a 30% reduction in serum TSH. No compensatory changes in mRNA expression of NB or other bombesin-related peptides and receptors (gastrin-releasing peptide (GRP), GRP-receptor and bombesin receptor subtype-3) were found in the pituitary of NBR-KO mice. Therefore, the data suggest that NB receptor pathways are importantly involved in thyrotroph gene regulation and function, leading to a state where TSH release is facilitated especially in response to TRH, but probably with a less-bioactive TSH. Therefore, the study highlights the important role of NB as a physiological regulator of pituitary-thyroid axis function and gene expression.  相似文献   
7.
To assess the role of neuromedin B receptor (NMB-R) on the modulation of serotonergic (5-HT) system, the function of the 5-HT system was examined in mice lacking the NMB-R gene. Immunohistochemical analysis of brain sections revealed that 5-HT expression level in the dorsal raphe neurons was elevated in NMB-R-deficient mice compared with wild-type mice. Although restraint stress enhanced 5-HT expression in these neurons in wild-type mice, this treatment did not affect 5-HT expression level in NMB-R-deficient mice, indicating the modulation of 5-HT system in the mutant mice. Since 5-HT system is involved in responses to stress and anxiety, we characterized stress response in these mice. The number of c-Fos expressing cells in the paraventricular nucleus of the hypothalamus was higher in NMB-R-deficient mice than in wild-type mice in both basal and stressed conditions. Moreover, the plasma corticosterone level under restraint stress was elevated in NMB-R-deficient mice compared to wild-type mice. In the forced swimming tests, the duration of immobility was longer in mutant mice than in wild-type mice. These data show dysregulated response to stress in NMB-R-deficient mice. However, behavior related to anxiety, assessed by elevated plus-maze and light-dark box, was not affected in NMB-R-deficient mice. NMB-R is known to be expressed in dorsal raphe neurons, and our data suggest that NMB-R has an important role in fine tuning of subsets of 5-HT neurons in this nucleus, and impairment of this system leads to the dysregulated response to stress.  相似文献   
8.
(1) Bombesin (BN), originally isolated from amphibians, is structurally related to a family of BN-like peptides found in mammals, which include gastrin-releasing peptide (GRP) and neuromedin B (NMB). These peptides have important effects on secretion, smooth muscle contraction, metabolism and behavior. Here we report cloning and characterization of two subtypes of BN-like peptide receptors in Aves. (2) The amino-acid sequence of chick GRP-R (chGRP-R) is highly identical with mammalian and amphibian GRP-R, and this receptor showed high affinity for GRP, BN and synthetic bombesin agonist, [D-Phe(6), beta-Ala(11), Phe(13), Nle(14)]bombesin(6-14) ([FAFNl]BN(6-14)). The chGRP-R gene was localized to chicken chromosome 1q23distal-q24proximal, where chick homologs of other human X-linked genes have also been mapped. (3) ChBRS-3.5, having sequence similarities to both mammalian bombesin-like peptide receptor subtype-3 and amphibian bombesin-like peptide receptor subtype-4, showed high affinity for [FAFNl]BN(6-14), moderate affinity for BN, but low affinity for both GRP and NMB. (4) Expression of both receptors was detected in brain, but only chGRP-R was expressed in gastrointestinal (GI) tissues. (5) When expressed in Chinese hamster ovary K1 cells, these receptors mediate intracellular calcium mobilization upon agonist stimulation. These results suggest that a novel BN peptide may occur in Aves as an endogenous ligand for chBRS-3.5. (6) The receptor sequences responsible for ligand selectivities were discussed and this knowledge about avian BN-like peptide receptors will help us to understand the molecular basis for agonist sensitivities of BN-like peptide receptors.  相似文献   
9.
Taste preference in obese mice was examined using genetically obese (bombesin receptor subtype-3: BRS-3 deficient) animals. Preference for either sodium saccharin (0.2%). sodium chloride (0.9%), citric acid (0.1%), or quinine sulfate (0.002%) solution was examined using a two-bottle test situation, and BRS-3 deficient mice not only showed a stronger preference for saccharin solution, but also a stronger aversive response to quinine solution, relative to wild-type littermates. Furthermore, a conditioned taste-aversion test measured the consumption of sodium saccharin (0.2%) and sodium chloride (0.9%) solutions after intraperitoneal injection of LiCl (0.3 M, 1 mg/kg), and BRS-3-deficient mice exhibited stronger aversion to both solutions than did control animals. In situ hybridization demonstrated that the BRS-3 gene is expressed in the parabrachial nucleus, the medial and central nuclei of the amygdala, and the hypothalamic nuclei such as paraventricular nucleus, all of which are known to be involved in taste perception. These results suggest that expression of the BRS-3 gene in these nuclei is important for the modulation of taste preference, as well as the development of obesity.  相似文献   
10.
Imprinting is an example of learning and memory acquisition in infancy. In the case of precocial birds, such as geese, ducks, and chickens, the baby birds learn the characteristics of the first moving object that they see within a critical period, and they imprint on it and follow it around. We analyzed the neural basis of this behavior in order to understand the neural mechanism of learning and memory in infancy. Information pertaining to a visual imprinting stimulus is recognized and processed in the visual Wulst, a region that corresponds to the mammalian visual cortex. It is then transmitted to the posterior region of the telencephalon, followed by the core region of the hyperpallium densocellulare (HDCo), periventricular region of the hyperpallium densocellulare (HDPe), and finally, the intermediate medial mesopallium (IMM), a region similar to the mammalian association cortex. Memory is stored in the IMM. After imprint training, plastic changes are observed in the visual Wulst as well as in the neurons of this circuit. HDCo cells, located at the center of this circuit, express N-methyl-D-aspartate (NMDA) receptors containing the NMDA receptor (NR) 2B subunit; the expression of this receptor increased after the imprint training. Inhibition of this receptor in the cells of the HDCo region leads to failure of imprinting and inactivation of this circuit. Thus, NMDA receptors bearing the NR2B subunit play a critical role in plastic changes in this circuit and in induction of imprinting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号