首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  国内免费   1篇
妇产科学   1篇
基础医学   6篇
口腔科学   1篇
临床医学   1篇
内科学   8篇
神经病学   1篇
综合类   1篇
预防医学   2篇
  2022年   1篇
  2014年   3篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1969年   1篇
排序方式: 共有21条查询结果,搜索用时 78 毫秒
1.
Females have generally more robust immune responses than males for reasons that are not well-understood. Here we used a systems analysis to investigate these differences by analyzing the neutralizing antibody response to a trivalent inactivated seasonal influenza vaccine (TIV) and a large number of immune system components, including serum cytokines and chemokines, blood cell subset frequencies, genome-wide gene expression, and cellular responses to diverse in vitro stimuli, in 53 females and 34 males of different ages. We found elevated antibody responses to TIV and expression of inflammatory cytokines in the serum of females compared with males regardless of age. This inflammatory profile correlated with the levels of phosphorylated STAT3 proteins in monocytes but not with the serological response to the vaccine. In contrast, using a machine learning approach, we identified a cluster of genes involved in lipid biosynthesis and previously shown to be up-regulated by testosterone that correlated with poor virus-neutralizing activity in men. Moreover, men with elevated serum testosterone levels and associated gene signatures exhibited the lowest antibody responses to TIV. These results demonstrate a strong association between androgens and genes involved in lipid metabolism, suggesting that these could be important drivers of the differences in immune responses between males and females.The variability in the biology of human populations poses significant challenges in understanding different disease outcomes and developing successful therapeutics. The sources of this variation are likely the consequence of genetics, epigenetics, and the history of antigenic exposure (1, 2). As therapies targeting immune function are developed to improve clinical outcomes in cancer, viral and bacterial infections, autoimmune diseases, and transplantation, identifying the sources of immunological variation and finding biomarkers for immune health and dysfunction are crucial for their success (3).An important source of immunological variation is known to be the sex of the individual. Males experience a greater severity and prevalence of bacterial, viral, fungal, and parasitic infections than females, who also exhibit a more robust response to antigenic challenges such as infection and vaccination (4, 5). This stronger immune response in females could also explain why they more frequently develop immune-mediated pathologies during influenza infection, such as an overproduction of cytokines (cytokine storm) that contribute to an increase in capillary permeability and lung failure (6). Furthermore, females are at a higher risk for developing autoimmune diseases. In this later context, it is interesting to note that a recent study showed that females had, on average, 1.7 times the frequency of self-specific T cells as males (7). Despite the fact that initial observations relating the sex of the individual with the immune response were made many years ago (8), little is known about the mechanisms underlying these differences.Some sex-specific variations in the immune response can be directly attributed to sex hormones (9). In humans, sex steroids can bind to intracellular receptors located in immune cells such as monocytes, B cells, and T cells and activate hormone-responsive genes, suggesting that they can directly affect sex-related differences in both innate and adaptive immune responses (10). Whereas estrogens are associated with inflammation and can stimulate proliferation and differentiation of lymphocytes and monocytes, androgens suppress the activity of immune cells by increasing the synthesis of anti-inflammatory cytokines (11, 12).To date, no clear associations have been found between biological and clinical differences in the immune response between males and females in humans. In one study, results from public gene expression data (13) showed that many of the genes induced by a yellow fever vaccine were preferentially activated in females (14). However, whether these differences correlate with poor antibody outcomes remains to be determined.In this study, we sought to determine whether we could identify biomarkers from peripheral blood that could explain the sex-related differences in the serological response to the trivalent inactivated seasonal influenza vaccine (TIV) in both young and older cohorts.Young and older females had higher neutralizing antibodies than age-matched males, consistent with previous reports (15). Females also showed higher expression of inflammatory markers. However, none of these specific sex-related differences correlated with the observed disparities in the antibody response to TIV. Nevertheless, using a machine learning approach, we identified a set of genes previously shown to be regulated by testosterone and participating in lipid biosynthesis, whose expression was negatively associated with antibody responses to TIV in the male subjects in our study. Moreover, males with high levels of serum testosterone and expressing related gene signatures in blood cells showed the lowest neutralizing responses to TIV. These results suggest that testosterone might be immunosuppressive in vivo in humans, and indicate that its effect on an influenza vaccine and other immune responses could be due to the regulation of genes implicated in the metabolism of lipids.  相似文献   
2.
VAR2CSA is the main candidate for a pregnancy malaria vaccine, but vaccine development may be complicated by sequence polymorphism. Here, we obtained partial or full-length var2CSA sequences from 106 parasites and applied novel computational methods and three-dimensional modeling to investigate VAR2CSA geographic variation and selection pressure. Our analysis reveals structural patterns of VAR2CSA sequence variation in which polymorphic sites group into segments of limited diversity. Within these segments, two or three basic types characterize a substantial majority of the parasite samples. Comparison to the primate malaria Plasmodium reichenowi shows that these basic types have ancient origins. Globally, var2CSA genes are comprised of a mosaic of these ancestral polymorphic segments that have recombined extensively between var2CSA alleles. Three-dimensional modeling reveals that polymorphic segments concentrate in flexible loops at characteristic locations in the six VAR2CSA Duffy binding-like (DBL) adhesion domains. Individual DBL domain surfaces have distinct patterns of diversifying selection, suggesting that limited and differing portions of each DBL domain are targeted by host antibody. Since standard phylogenetic tree analysis is inadequate for highly recombining genes like var2CSA, we developed a novel phylogenetic approach that incorporates recombination and tracks new mutations in segment types. In the resulting tree, P. reichenowi is confirmed as an outlier and African and Asian P. falciparum isolates have slightly diverged. These findings validate a new approach to modeling protein evolution in the presence of frequent recombination and provide a clearer understanding of how var gene products function as immunoevasive binding ligands.  相似文献   
3.
Malaria remains a public health hazard in tropical countries as a consequence of the rise and spread of drug and insecticide resistances; hence the need for a vaccine with widespread application. Protective immunity to malaria is known to be mediated by both antibody and cellular immune responses, though characterization of the latter has been less extensive. The aim of the present investigation was to identify novel T-cell epitopes that may contribute to naturally acquired immune responses against malaria. Using the Microsoft software, Epitome™ T-cell peptide epitopes on 19 Plasmodium falciparum proteins in the Plasmodium Database (www.plasmodb.org.PlasmoDB 9.0) were predicted in-silico. The peptides were synthesized and used to stimulate peripheral blood mononuclear cells (PBMCs) in 14 semi-immune and 21 malaria susceptible subjects for interferon-gamma (IFN-γ) production ex-vivo. The level of IFN-γ production, a marker of T-cell responses, was measured by ELISPOT assay in semi-immune subjects (SIS) and frequently sick subjects (FSS) from an endemic zone with perennial malaria transmission. Of the 19 proteins studied, 17 yielded 27 pools (189 peptides), which were reactive with the subjects’ PBMCs when tested for IFN-γ production, taking a stimulation index (SI) of ≥2 as a cutoff point for a positive response. There were 10 reactive peptide pools (constituting eight protein loci) with an SI of 10 or greater. Of the 19 proteins studied, two were known vaccine candidates (MSP-8 and SSP2/TRAP), which reacted both with SIS and FSS. Similarly the hypothetical proteins (PFF1030w, PFE0795c, PFD0880w, PFC0065c and PF10_0052) also reacted strongly with both SIS and FSS making them attractive for further characterization as mediators of protective immunity and/or pathogenesis.  相似文献   
4.
Mechanism of diarrhea in microscopic colitis   总被引:1,自引:0,他引:1  
AIM: To search the pathophysiological mechanism of diarrhea based on daily stool weights, fecal electrolytes, osmotic gap and pH. METHODS: Seventy-six patients were included: 51 with microscopic colitis (MC) [40 with lymphocytic colitis (LC); 11 with collagenous colitis (CC)]; 7 with MC without diarrhea and 18 as a control group (CG). They collected stool for 3 d. Sodium and potassium concentration were determined by flame photometry and chloride concentration by titration method of Schales. Fecal osmotic gap was calculated from the difference of osmolarity of fecal fluid and double sum of sodium and potassium concentration. RESULTS: Fecal fluid sodium concentration was significantly increased in LC 58.11±5.38 mmol/L (P<0.01) and CC 54.14±8.42 mmol/L (P<0.05) than in CG 34.28±2.98 mmol/L. Potassium concentration in LC 74.65±5.29 mmol/L (P<0.01) and CC 75.53±8.78 mmol/L (P<0.05) was significantly less compared to CG 92.67±2.99 mmol/L. Chloride concentration in CC 36.07±7.29 mmol/L was significantly higher than in CG 24.11±2.05 mmol/L (P<0.05). Forty-four (86.7%) patients had a secretory diarrhea compared to fecal osmotic gap. Seven (13.3%) patients had osmotic diarrhea. CONCLUSION: Diarrhea in MC mostly belongs to the secretory type. The major pathophysiological mechanism in LC could be explained by a decrease of active sodium absorption. In CC, decreased CI/HCO_3 exchange rate and increased chloride secretion are coexistent pathways.  相似文献   
5.
6.
7.
8.
9.
10.

Background

Extensive allelic matching in the human leukocyte antigen (HLA) genes is regarded as a prerequisite for good clinical success of allogeneic haematopoietic stem cell transplantation (HSCT). Also other genetic factors can be assumed to play a role in preventing and controlling the complications associated with allogeneic HSCT, in particular graft-versus-host disease (GvHD). Interleukin-10 (IL-10) and its receptor (IL-10R), key regulators of the immune response, are among these candidates. We studied the association of IL-10 and IL-10Rβ gene polymorphisms with the occurrence of GvHD in 309 HLA-identical sibling donor and recipient pairs.

Results

The difference in genotypic IL-10 production between patient and donor in combination with patient IL-10Rβ A/A genotype predisposed strongly to acute GvHD (OR = 7.15, p = 0.000023). On the other hand, a combination of same genotypic IL-10 production with patient IL-10Rβ A/A genotype protected from chronic GvHD (OR = 0.407, p = 0.0097).

Conclusion

Our results suggest that IL-10 and IL-10Rβ genes have a synergistic effect on the risk of GvHD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号