首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
儿科学   2篇
基础医学   1篇
临床医学   1篇
内科学   2篇
神经病学   3篇
特种医学   1篇
预防医学   4篇
药学   4篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2015年   1篇
  2013年   3篇
  2012年   2篇
  2011年   5篇
  2010年   3篇
  2003年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
The hepatoprotective activity of the aqueous extract of the shells of pecan nut was investigated against ethanol-induced liver damage. This by-product of the food industry is popularly used to treat toxicological diseases. We evaluated the phytochemical properties of pecan shell aqueous extract (AE) and its in vitro and ex vivo antioxidant activity. The AE was found to have a high content of total polyphenols (192.4 ± 1.9 mg GAE/g), condensed tannins (58.4 ± 2.2 mg CE/g), and antioxidant capacity, and it inhibited Fe2+-induced lipid peroxidation (LP) in vitro. Rats chronically treated with ethanol (Et) had increased plasmatic transaminases (ALT, AST) and gamma glutamyl transpeptidase (GGT) levels (96%, 59.13% and 465.9%, respectively), which were effectively prevented (87; 41 and 383%) by the extract (1:40, w/v). In liver, ethanol consumption increased the LP (121%) and decreased such antioxidant defenses as glutathione (GSH) (33%) and superoxide dismutase (SOD) (47%) levels, causing genotoxicity in erythrocytes. Treatment with pecan shell AE prevented the development of LP (43%), GSH and SOD depletion (33% and 109%, respectively) and ethanol-induced erythrocyte genotoxicity. Catalase activity in the liver was unchanged by ethanol but was increased by the extract (47% and 73% in AE and AE + Et, respectively). Therefore, pecan shells may be an economic agent to treat liver diseases related to ethanol consumption.  相似文献   
2.
Chronic consumption of processed food causes structural changes in membrane phospholipids, affecting brain neurotransmission. Here we evaluated noxious influences of dietary fats over two generations of rats on amphetamine (AMPH)-conditioned place preference (CPP). Female rats received soybean oil (SO, rich in n-6 fatty acids (FA)), fish oil (FO, rich in n-3 FA) and hydrogenated vegetable fat (HVF, rich in trans fatty acids (TFA)) for two successive generations. Male pups from the 2nd generation were maintained on the same supplementation until 41 days of age, when they were conditioned with AMPH in CPP. While the FO group showed higher incorporation of n-3 polyunsaturated-FA (PUFA) in cortex/hippocampus, the HVF group showed TFA incorporation in these same brain areas. The SO and HVF groups showed AMPH-preference and anxiety-like symptoms during abstinence. Higher levels of protein carbonyl (PC) and lower levels of non-protein thiols (NPSH) were observed in cortex/hippocampus of the HVF group, indicating antioxidant defense system impairment. In contrast, the FO group showed no drug-preference and lower PC levels in cortex. Cortical PC was positively correlated with n-6/n-3 PUFA ratio, locomotion and anxiety-like behavior, and hippocampal PC was positively correlated with AMPH-preference, reinforcing connections between oxidative damage and AMPH-induced preference/abstinence behaviors. As brain incorporation of trans and n-6 PUFA modifies its physiological functions, it may facilitate drug addiction.  相似文献   
3.
Eragrostis teff is an Ethiopian native grass plant (Poaceae or Gramineae family) whose importance as a crop grain has increased in recent years. The aim of this study is to analyze the nutritional composition of its seeds and the mutagenic/antimutagenic activity of the hydroalcoholic extract of the seed flour. Chemical elements (colloquially known as minerals) were determined using Particle-Induced X-ray Emission (PIXE) and Flame Atomic Absorption Spectroscopy (FAAS), while the content of amino acids (aminogram) and fatty acids (profile of fatty acids) were quantified by HPLC. Mutagenic activities were tested using Salmonella/microsome assay. Mutagens doxorubicin, 4-nitroquinolin N-oxide, methylmethanosulphonate, and aflatoxin B-1 were used in Salmonella typhimurium TA98 and TA100 strains to assess antimutagenic activities. The major elements observed were K, P, S, Mg, and Ca. Almost all essential amino acids were observed and the predominance of unsaturated fatty acids in the total oil content of 2.72% (w/w) is also noted, including the two essential fatty acids alpha-linolenic acid (an omega-3 fatty acid) and linoleic acid (an omega-6 fatty acid). Hydroalcoholic extract of E. teff seed flour showed antimutagenic activity, protecting against frameshift and base pair substitution mutations. These findings provide valuable information for further development of healthier foods that can be produced with increasing yields and minimal environmental impact.

Eragrostis teff is an Ethiopian native grass plant (Poaceae or Gramineae family) whose importance as a crop grain has increased in recent years.  相似文献   
4.
Acute reserpine and subchronic haloperidol are animal models of extrapyramidal disorders often used to study parkinsonism, akinesia and tardive dyskinesia. In humans, these usually irreversible and disabling extrapyramidal disorders are developed by typical antipsychotic treatment, whose pathophysiology has been related to oxidative damages development. So far, there is no treatment to prevent these problems of the psychiatric clinic, and therefore further studies are needed.Here we used the animal models of extrapyramidal disorders cited above, which were performed in two distinct experiments: orofacial dyskinesia (OD)/catalepsy induced by acute reserpine and subchronic haloperidol after (experiment 1) and before (experiment 2) oral treatment with pecan shell aqueous extract (AE), a natural and promissory antioxidant.When administered previously (exp.1), the AE prevented OD and catalepsy induced by both reserpine and haloperidol. When reserpine and haloperidol were administered before the extract (exp.2), the animals developed OD and catalepsy all the same. However, the orofacial parameter (but not catalepsy) in both animal models was reversed after 7 and 14 days of AE treatment. These results indicate that, acute reserpine and subchronic haloperidol administrations induced similar motor disorders, although through different mechanisms, and therefore are important animal models to study the physiopathology of extrapyramidal disorders. Comparatively, the pecan shell AE was able to both prevent and reverse OD but only to prevent catalepsy. These results reinforce the role of oxidative stress and validate the two animal models used here. Our findings also favor the idea of prevention of extrapyramidal disorders, rather than their reversal.  相似文献   
5.
We investigated the antioxidant potential of gallic acid (GA), a natural compound found in vegetal sources, on the motor and oxidative damages induced by lead. Rats exposed to lead (50 mg/kg, i.p., once a day, 5 days) were treated with GA (13.5 mg/kg, p.o.) or EDTA (110 mg/kg, i.p.) daily, for 3 days. Lead exposure decreased the locomotor and exploratory activities, reduced blood ALA-D activity, and increased brain catalase (CAT) activity without altering other antioxidant defenses. Brain oxidative stress (OS) estimated by lipid peroxidation (TBARS) and protein carbonyl were increased by lead. GA reversed the motor behavior parameters, the ALA-D activity, as well as the markers of OS changed by lead exposure. CAT activity remained high, possibly as a compensatory mechanism to eliminate hydroperoxides during lead poisoning. EDTA, a conventional chelating agent, was not beneficial on the lead-induced motor behavior and oxidative damages. Both GA (less) and EDTA (more) reduced the lead accumulation in brain tissue. Negative correlations were observed between the behavioral parameters and lipid peroxidation and the lead levels in brain tissue. In conclusion, GA may be an adjuvant in lead exposure, mainly by its antioxidant properties against the motor and oxidative damages resulting from such poisoning.  相似文献   
6.
Here we evaluate the influence of a new exercise protocol on movement disorders induced by neuroleptic drugs. In this animal model, involuntary movements are closely related to neuronal degeneration and oxidative stress (OS) that can be caused by pre-synaptic D2 receptor blockade increasing dopamine (DA) metabolism. The increase in vacuous chewing movements (VCM) and the reduced locomotor activity induced by haloperidol treatment (12 mg/kg-im, once a week for 4 weeks) was prevented by exercise, 5 times per week, which was initiated four weeks before the first haloperidol administration. Exercise training also prevented the increase of haloperidol-induced lipid peroxidation in the cortex and subcortical region and recovered the catalase activity in the subcortical region. There was a negative correlation between catalase activity in the subcortical region and the VCM frequency (r = 0.50, p < 0.05), as well as a positive correlation between VCM frequency and lipid peroxidation in the cortex (r = 0.64, p < 0.05) and subcortical region (r = 0.71, p < 0.0001). Both haloperidol and exercise increased DA uptake in the striatum, while the co-treatment (exercise plus haloperidol) reduced it. The striatal DA uptake correlated negatively with catalase activity (r = 0.51, p < 0.05), indicating a relationship between oxidative damage and the function of the transporter in the striatum. Our findings show that physical exercise can modulate dopamine uptake, especially when it is altered, and reveal the benefit of this new exercise protocol in the prevention of movement disorders related to oxidative damage.  相似文献   
7.
8.
In the last decades, foods rich in omega-3 (ω-3) fatty acids (FA) have been replaced by omega-6 (ω-6) and trans FA, which are found in processed foods. The influence of ω-6 (soybean oil - SO), trans (hydrogenated vegetable fat - HVF) and ω-3 (fish oil - FO) fatty acids on locomotor and oxidative stress (OS) parameters were studied in an animal model of mania. Rats orally fed with SO, HVF and FO for 8 weeks received daily injections of amphetamine (AMPH — 4 mg/kg/mL-ip) for the last week of oral supplementation. HVF induced hyperactivity, increased the protein carbonyl levels in the cortex and decreased the mitochondrial viability in cortex and striatum. AMPH-treatment increased the locomotion and decreased the mitochondrial viability in all groups, but its neurotoxicity was higher in the HVF group. Similarly, AMPH administration increased the protein carbonyl levels in striatum and cortex of HVF-supplemented rats. AMPH reduced the vitamin-C plasmatic levels of SO and HVF-fed rats, whereas no change was observed in the FO group. Our findings suggest that trans fatty acids increased the oxidative damage per se and exacerbated the AMPH-induced effects. The impact of trans fatty acids consumption on neuronal diseases and its consequences in brain functions must be further evaluated.  相似文献   
9.
Sport Sciences for Health - To assess the role of adiposity in the relationship between physical fitness with cardiometabolic risk factors (CMRF), adipocytokines and inflammation in children. This...  相似文献   
10.
The influence of trans fatty acids (FA) on development of orofacial dyskinesia (OD) and locomotor activity was evaluated. Rats were fed with diets enriched with 20% soybean oil (SO; n − 6 FA), lard (L; saturated FA) or hydrogenated vegetable fat (HVF; trans FA) for 60 weeks. In the last 12 weeks each group was subdivided into sedentary and exercised (swimming). Brains of HVF and L-fed rats incorporated 0.33% and 0.20% of trans FA, respectively, while SO-fed group showed no incorporation of trans FA. HVF increased OD, while exercise exacerbated this in L and HVF-fed rats. HVF and L reduced locomotor activity, and exercise did not modify. Striatal catalase activity was reduced by L and HVF, but exercise increased its activity in the HVF-fed group. Na+K+-ATPase activity was not modified by dietary FA, however it was increased by exercise in striatum of SO and L-fed rats. We hypothesized that movement disorders elicited by HVF and less by L could be related to increased dopamine levels in striatum, which have been related to chronic trans FA intake. Exercise increased OD possibly by increase of brain dopamine levels, which generates pro-oxidant metabolites. Thus, a long-term intake of trans FA caused a small but significant brain incorporation of trans FA, which favored development of movement disorders. Exercise worsened behavioral outcomes of HVF and L-fed rats and increased Na+K+-ATPase activity of L and SO-fed rats, indicating its benefits. HVF blunted beneficial effects of exercise, indicating a critical role of trans FA in brain neurochemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号