首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   4篇
  国内免费   2篇
妇产科学   4篇
基础医学   15篇
临床医学   2篇
内科学   48篇
特种医学   1篇
外科学   2篇
肿瘤学   5篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2008年   5篇
  2007年   11篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   5篇
  2002年   7篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
1.
The aim of this study was to evaluate the effect of cariporide, a selective Na(+)/H(+) exchange inhibitor, on isolated and cultured hepatic stellate cells (HSCs) and in 2 in vivo models of rat liver fibrosis. Platelet-derived growth factor (PDGF)-induced HSC proliferation, evaluated by measuring the percentage of bromodeoxyuridine-positive cells, was significantly inhibited by cariporide, with a maximal effect at 10 micromol/L. Incubation with cariporide did not inhibit PDGF-induced extracellular-regulated kinase 1/2 (ERK1/2), Akt (a downstream component of the phosphatidylinositol [PI]-3 kinase pathway), and protein kinase C (PKC) activation but reduced PDGF-induced activation of the Na(+)/H(+) exchanger, with a maximal effect at 10 micromol/L. Rats treated with dimethylnitrosamine (DMN; 10 mg/kg) for 1 and 5 weeks received a diet with or without 6 ppm cariporide. Treatment with cariporide reduced the degree of liver injury, as determined by alanine aminotransferase (ALT) values, also when administered after the induction of hepatic damage. This was associated with reduced HSC activation and proliferation and reduced collagen deposition, as determined by morphometric evaluation of alpha-smooth muscle actin (SMA)/proliferating cell nuclear antigen-positive cells and percentage of Sirius red-positive parenchyma, respectively. Moreover, cariporide was also able to reduce alpha(1)I procollagen messenger RNA (mRNA) expression. Similar effects were observed in bile duct-ligated (BDL) rats. In conclusion, selective inhibition of the Na(+)/H(+) exchanger by cariporide may represent an effective therapeutic strategy in the treatment of hepatic fibrosis.  相似文献   
2.
Insulin stimulates canalicular bile flow by interaction with hepatocytes. Insulin regulates the function of a number of epithelia through activation and membrane translocation of Ca(2+)-dependent PKC isoforms. No information exists regarding insulin regulation of ductal bile secretion. The aim of the study was to determine the role and mechanisms of action of insulin in the regulation of cholangiocyte secretion in BDL rats. We determined the subcellular localization of insulin receptor in cholangiocytes. We measured the effect of insulin on (1) secretin-stimulated cAMP levels in cholangiocytes and duct expansion in intrahepatic bile duct units (IBDUs) in the absence or presence of BAPTA/AM, H7 or rottlerin and (2) bile flow. We evaluated (1) if insulin effects are associated with activation of PKC alpha and (2) if activation of PKC causes inhibition of secretin-stimulated cAMP levels and PKA activity. We found insulin receptors only in the apical domain of cholangiocytes. Insulin inhibited secretin-induced choleresis and secretin-stimulated cholangiocyte cAMP levels. Insulin inhibited secretin-induced secretion in IBDUs when applied at the basolateral membrane or microinjected into IBDU lumen. Insulin inhibitory effects on cholangiocyte secretion were blocked by BAPTA/AM and H7. Insulin induced activation of PKC alpha, which decreased secretin-stimulated cAMP and PKA activity. In conclusion, insulin inhibited secretin-induced ductal secretion of BDL rats through activation of PKC and inhibition of secretin-stimulated cAMP and PKA activity. In conclusion, insulin counter-regulates cholangiocyte secretory processes in the BDL model, which is characterized by cholangiocyte proliferation.  相似文献   
3.
The objective of this article is to summarize the findings related to the notion that cholangiocytes, within small and large intrahepatic ducts, are heterogeneous regarding (1) morphology; (2) secretion in response to hormones and peptides and to bile acids; and (3) proliferation in response to injury or toxins, including bile duct ligation (BDL), acute carbon tetrachloride (CCl 4 ) administration, chronic feeding of bile salts (i.e., taurocholate [TC] or taurolithocholate [TLC]) or alpha-naphthylisothiocyanate (ANIT). After an overview of the morphology of the biliary epithelium, we provide a summary of cholangiocyte function, the in vivo models, and the in vitro experimental tools (i.e., small and large cholangiocytes or small and large intrahepatic bile duct units [IBDU]), which allowed us to demonstrate cholangiocyte heterogeneity. After a discussion on the receptors, transporters, and channels that are heterogeneously expressed by cholangiocytes, we discuss the different-sized ducts that differentially respond to injury and toxins. Finally, we review the human diseases that selectively target specific-sized ducts.  相似文献   
4.
The presence of multinucleated cells has never been demonstrated in renal tissue, although, polyploid cells were recently observed in the tubules of normal and pathological human kidney. Therefore, the aim of the present study is to identify and quantify, by electron microscopy, multinucleated cells in the cortical tissue of normal human kidney i.e., in the three compartments of renal tubule: the proximal tubule (PT), the distal tubule (DT), and the collecting duct (CD), as well as, in the glomerulus (podocytes). The percentage of the multinucleated cells observed was 5% (95%CI: 3.6%–6.7%) in renal cortical tubules with distribution in each tubular compartment of 6% in PT, 4% in DT and 3% in CD with no statistically significant difference in the distribution of multinucleated cells according to tubular compartments. Four percent of analysed podocytes (in total 149 podocytes) were multinucleated (95%CI: 1.5%−8.6%). In conclusion, multinucleated cells were identified and quantified in functionally normal kidneys, as previously demonstrated in other organs such as the liver.  相似文献   
5.
6.
BACKGROUND & AIMS: Cholangiopathies are characterized by progressive dysregulation of the balance between proliferation and death of cholangiocytes. In the course of cholestasis, cholangiocytes undergo a neuroendocrine transdifferentiation and their biology is regulated by neuroendocrine hormones. Glucagon-like peptide-1 (GLP-1), secreted by neuroendocrine cells, sustains beta-cell survival in experimental diabetes and induces the neuroendocrine transdifferentiation of pancreatic ductal cells. GLP-1 receptor (GLP-1R) selective agonist exendin-4 is used in humans as a novel therapeutic tool for diabetes. The aim of this study was to define if GLP-1 modulates cholangiocyte biologic response to cholestasis. METHODS: Expression of GLP-1R in cholangiocytes was determined. Effects on cholangiocyte proliferation of the in vitro and in vivo exposure to GLP-1 or exendin-4, together with the intracellular signals, were then studied. Synthesis of GLP-1 by cholangiocytes and the effects of GLP-1R blockage on their growth were also determined. RESULTS: Cholangiocytes express the GLP-1 receptor, which is up-regulated in the course of cholestasis. GLP-1 and exendin-4 increase cholangiocyte growth both in vitro and in vivo. The GLP-1R signal is mediated by the phosphatidyl-inositol-3-kinase, cAMP/Protein Kinase A, and Ca(2+)-CamKIIalpha but not by the ERK1/2 and PKCalpha pathways. Proliferating cholangiocytes synthesize GLP-1: neutralization of its action by GLP-1R antagonist blunts cholangiocyte response to cholestasis. CONCLUSIONS: GLP-1 is required for the cholangiocyte adaptive response to cholestasis. Cholangiocytes are susceptible to the activation of GLP-1R and respond with increased proliferation and functional activity. Exendin-4 availability for employment in humans and these data may open novel perspectives for the medical treatment of cholangiopathies.  相似文献   
7.
8.
9.
Heterogeneity of the intrahepatic biliary epithelium   总被引:3,自引:0,他引:3  
The objectives of this review are to outline the recent findings related to the morphological heterogeneity of the biliary epithelium and the heterogeneous pathophysiological responses of different sized bile ducts to liver gastrointestinal hormones and peptides and liver injury/toxins with changes in apoptotic, proliferative and secretory activities. The knowledge of biliary function is rapidly increasing because of the recognition that biliary epithelial cells (cholangiocytes) are the targets of human cholangiopathies, which are characterized by proliferation/damage of bile ducts within a small range of sizes. The unique anatomy, morphology, innervation and vascularization of the biliary epithelium are consistent with function of cholangiocytes within different regions of the biliary tree. The in vivo models [e.g., bile duct ligation (BDL), partial hepatectomy, feeding of bile acids, carbon tetrachloride (CCl4) orα-naphthylisothiocyanate (ANIT)] and the in vivo experimental tools [e.g., freshly isolated small and large cholangiocytes or intrahepatic bile duct units (IBDU) and primary cultures of small and large murine cholangiocytes] have allowed us to demonstrate the morphological and functional heterogeneity of the intrahepatic biliary epithelium. These models demonstrated the differential secretory activities and the heterogeneous apoptotic and proliferative responses of different sized ducts. Similar to animal models of cholangiocyte proliferation/injury restricted to specific sized ducts, in human liver diseases bile duct damage predominates specific sized bile ducts. Future studies related to the functional heterogeneity of the intrahepatic biliary epithelium may disclose new pathophysiological treatments for patients with cholangiopathies.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号