首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   16篇
儿科学   7篇
妇产科学   7篇
基础医学   46篇
口腔科学   3篇
临床医学   37篇
内科学   66篇
皮肤病学   16篇
神经病学   28篇
特种医学   30篇
外科学   27篇
综合类   1篇
预防医学   34篇
眼科学   1篇
药学   30篇
中国医学   1篇
肿瘤学   20篇
  2023年   6篇
  2022年   14篇
  2021年   17篇
  2020年   17篇
  2019年   10篇
  2018年   15篇
  2017年   12篇
  2016年   9篇
  2015年   13篇
  2014年   11篇
  2013年   16篇
  2012年   29篇
  2011年   32篇
  2010年   22篇
  2009年   14篇
  2008年   27篇
  2007年   18篇
  2006年   17篇
  2005年   9篇
  2004年   11篇
  2003年   4篇
  2002年   15篇
  2001年   1篇
  2000年   9篇
  1999年   5篇
  1986年   1篇
排序方式: 共有354条查询结果,搜索用时 31 毫秒
1.
It is well recognized that the world population is ageing rapidly. Therefore, it is important to understand ageing processes at the cellular and molecular levels to predict the onset of age‐related diseases and prevent them. Recent research has focused on the identification of ageing biomarkers, including those associated with the properties of the Golgi apparatus. In this context, Golgi‐mediated glycosylation of proteins has been well characterized. Additionally, other studies show that the secretion of many compounds, including pro‐inflammatory cytokines and extracellular matrix–degrading enzymes, is modified during ageing, resulting in physical and functional skin degradation. Since the Golgi apparatus is a central organelle of the secretory pathway, we investigated its structural organization in senescent primary human dermal fibroblasts using confocal and electron microscopy. In addition, we monitored the expression of Golgi‐related genes in the same cells. Our data showed a marked alteration in the Golgi morphology during replicative senescence. In contrast to its small and compact structure in non‐senescent cells, the Golgi apparatus exhibited a large and expanded morphology in senescent fibroblasts. Our data also demonstrated that the expression of many genes related to Golgi structural integrity and function was significantly modified in senescent cells, suggesting a relationship between Golgi apparatus function and ageing.  相似文献   
2.
C3a and C5a anaphylatoxins are proinflammatory polypeptides released during complement activation. They exert their biological activities through interaction with two G protein-coupled receptors named C3aR and C5aR, respectively. In the brain, these receptors are expressed on glial cells, and some recent data have suggested that anaphylatoxins could mediate neuroprotection. In this study, we used RT-PCR and ribonuclease protection assays (RPA) to investigate the role of anaphylatoxins on neurotrophin expression by the human glioblastoma cell line T98G and by rat astrocytes. Our data show that for both cell types, anaphylatoxins upregulate expression of NGF mRNA. This response depended on a G protein-coupled pathway since pre-treatment of cells with pertussis toxin (PTX) completely blocked NGF mRNA increases. This effect was anaphylatoxin-specific since pre-incubation with anti-C3a or anti-C5aR antibodies abolished the effects of C3a and C5a, respectively. The regulation of NGF mRNA by anaphylatoxins was not accompanied by translation into protein expression, but there was a significant synergic effect of anaphylatoxins/IL-1b costimulation. Our demonstration of involvement of anaphylatoxins in the NGF release process by astrocytes suggests that C3a and C5a could modulate neuronal survival in the CNS.  相似文献   
3.
4.
5.
6.
7.
Magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU, or MRgFUS) is a hybrid technology that was developed to provide efficient and tolerable thermal ablation of targeted tumors or other pathologic tissues, while preserving the normal surrounding structures. Fast 3-D ablation strategies are feasible with the newly available phased-array HIFU transducers. However, unlike fixed heating sources for interstitial ablation (radiofrequency electrode, microwave applicator, infra-red laser applicator), HIFU uses propagating waves. Therefore, the main challenge is to avoid thermo-acoustical adverse effects, such as energy deposition at reflecting interfaces and thermal drift of the focal lesion toward the near field. We report here our investigations on some novel experimental solutions to solve, or at least to alleviate, these generally known tolerability problems in HIFU-based therapy. Online multiplanar MR thermometry was the main investigational tool extensively used in this study to identify the problems and to assess the efficacy of the tested solutions. We present an improved method to cancel the beam reflection at the exit window (i.e., tissue-to-air interface) by creating a multilayer protection, to dissipate the residual HIFU beam by bulk scattering. This study evaluates selective de-activation of transducer elements to reduce the collateral heating at bone surfaces in the far field, mainly during automatically controlled volumetric ablation. We also explore, using hybrid US/MR simultaneous imaging, the feasibility of using disruptive boiling at the focus, both as a far-field self-shielding technique and as an enhanced ablation strategy (i.e., boiling core controlled HIFU ablation).  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号