首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   1篇
  国内免费   1篇
基础医学   2篇
临床医学   4篇
内科学   7篇
神经病学   12篇
特种医学   4篇
外科学   3篇
预防医学   4篇
药学   9篇
肿瘤学   2篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
In modern society, the widespread use of artificial light at night disrupts the suprachiasmatic nucleus (SCN), which serves as our central circadian clock. Existing models describe excitatory responses of the SCN to primarily blue light, but direct measures in humans are absent. The combination of state-of-the-art neuroimaging techniques and custom-made MRI compatible light-emitting diode devices allowed to directly measure the light response of the SCN. In contrast to the general expectation, we found that blood oxygen level–dependent (BOLD) functional MRI signals in the SCN were suppressed by light. The suppressions were observed not only in response to narrowband blue light (λmax: 470 nm) but remarkably, also in response to green (λmax: 515 nm) and orange (λmax: 590 nm), but not to violet light (λmax: 405 nm). The broadband sensitivity of the SCN implies that strategies on light exposure should be revised: enhancement of light levels during daytime is possible with wavelengths other than blue, while during nighttime, all colors are potentially disruptive.

Due to the Earth’s rotation around its axis, many organisms developed an internal clock to anticipate the predictable changes in the environment that occur every 24 h, including the daily light–dark cycle. In mammals, this clock is located in the suprachiasmatic nucleus (SCN), located in the hypothalamus directly above the optic chiasm (1, 2). The SCN receives information from the retina regarding ambient light levels via intrinsically photosensitive retinal ganglion cells (ipRGCs), thus synchronizing its internal clock to the external light–dark cycle. ipRGCs contain the photopigment melanopsin, which is maximally sensitive to blue light, with a peak response to 480-nm light (3, 4). In addition, ipRGCs also receive input from rod cells and cone cells (57). The three cone cell subtypes in the human retina respond maximally to 420-nm, 534-nm, and 563-nm light, while rod cells respond maximally to 498-nm light (8). In rodents, input from cone cells renders the SCN sensitive to a broad spectrum of wavelengths (9), while rod cells mediate the SCN’s sensitivity to low-intensity light (10, 11). Recently, these findings in rodents were proposed to translate to humans (12), suggesting that the human clock is not only sensitive to blue light, but may also be sensitive to other colors.In humans, circadian responses to light are generally measured indirectly (e.g., by measuring melatonin levels or 24-h behavioral rhythms). These indirect measures revealed that circadian responses to light in humans are most sensitive to blue light (1316); however, green light has also been found to contribute to circadian phase shifting and changes in melatonin to a larger extent than would have been predicted based solely on the melanopsin response, suggesting that rods and/or cones may also provide functional input to the circadian system in humans (17). Despite this indirect evidence suggesting that several colors can affect the human circadian clock, this has never been measured directly due to technical limitations. Thus, current guidelines regarding the use of artificial light are based solely on the clock’s sensitivity to blue light. For example, blue light is usually filtered out in electronic screens during the night (18, 19), and blue-enriched light is used by night shift workers to optimize their body rhythm for achieving maximum performance (2022).The ability to directly image the human SCN in vivo has been severely limited due to its small size and the relatively low spatial resolution provided by medical imaging devices. Previous functional MRI (fMRI) studies using 3-Tesla (3T) scanners were restricted to recording the “suprachiasmatic area,” which encompasses a large part of the hypothalamus and thus includes many other potentially light-sensitive nuclei (2325). To overcome this limitation, we used a 7T MRI scanner, which can provide images with sufficiently high spatial resolution to image small brain nuclei (26) such as the SCN. Here, we applied colored light stimuli to healthy volunteers using a custom-designed MRI-compatible light-emitting diode (LED) device designed to stimulate specific photoreceptors while measuring SCN activity using fMRI. Using analytical approaches, we then identified the SCN’s response, the smallest brain nucleus that has so far been imaged. We found that the human SCN responds to a broad range of wavelengths (i.e., blue, green and orange light). Surprisingly, we also found that the blood oxygen level–dependent (BOLD) fMRI signal at the SCN is actually suppressed—not activated—by light.  相似文献   
2.
BACKGROUND: The chemokines keratinocyte-Derived Cytokine (KC) and macrophage inflammatory protein (MIP)-2, murine equivalents of human interleukin 8, have been implicated in remote injury after acute hind limb ischemia/reperfusion (I/R). These studies were designed to determine whether the cytokines responsible for remote tissue injury are also synthesized and accumulate in the ischemic or reperfused hind limb. METHODS: B6, 129SF2/J mice were subjected to either 3 hours of unilateral hind limb ischemia alone (IA) or 3 hours of ischemia followed by 4 or 24 hours of reperfusion (I/R). After IA or I/R, experimental and control (nonischemic) contralateral hind limbs were harvested for analysis of protein content, messenger RNA (mRNA), tissue edema, and viability. RESULTS: IA did not increase KC or MIP-2 mRNA or protein levels. In contrast, I/R resulted in a 15- and 10-fold increase in KC mRNA after 4 and 24 hours of reperfusion, respectively. KC protein levels were increased 10-fold after 4 hours of reperfusion and 30-fold after 24 hours (vs IA or sham; P < .001). MIP-2 mRNA transiently increased 42-fold after 4 hours of reperfusion but decreased to basal levels after 24 hours of reperfusion. Despite the relative increase in MIP-2 mRNA by 4 hours of reperfusion, significantly increased (8- to 10 fold) MIP-2 protein levels were not detected until 24 hours of reperfusion only in the reperfused limbs. Tissue edema was increased significantly (P < .01) compared with sham after just 4 hours of reperfusion and remained increased at 24 hours. Tissue viability decreased 52% after 4 hours of reperfusion and did not change significantly by 24 hours. CONCLUSIONS: Skeletal muscle is a site of significant ongoing chemokine synthesis during reperfusion. The persistent increase in muscle chemokine levels at 24 hours of reperfusion was not associated with increased edema or injury. The role of these chemokines during reperfusion may be further investigated by local or oral administration of chemokines or chemokine receptor antagonists. CLINICAL RELEVANCE: I/R injury remains an important clinical problem across a variety of surgical specialties. In the critical care arena, serum levels of proinflammatory cytokines have been useful in predicting the mortality associated with acute respiratory distress syndrome and sepsis. In this article, the data presented indicate that murine skeletal muscle produces potent proinflammatory neutrophil and macrophage chemokines during reperfusion, but not during ischemia. These findings suggest that measurement of tissue and/or serum levels of chemokines during reperfusion may be an important adjunct to predicting tissue injury along with ongoing inflammation during the clinical course of reperfusion injury. Within the vascular system, severe inflammatory responses are usually associated with thrombotic events. New techniques to noninvasively image thrombin activation (by using magnetic resonance imaging) in reperfused limbs may coincide with the pattern of murine skeletal muscle chemokine expression in humans. The data suggest that reperfusion is when chemokine mRNA and protein synthesis increase. Within the time periods studied in these experiments, the chemokine component of the inflammatory response remained in the reperfused, rather than the systemic nonreperfused, tissue. This observation may underestimate the degree of the systemic response to ischemia because the single mouse hind limb represents only 7% of the mouse total body area, whereas the human limb represents nearly 18% of the adult body area. Despite this shortcoming, these data provide potential temporal and quantitative information regarding the location and magnitude of chemokine synthesis in skeletal muscle during reperfusion.  相似文献   
3.
Dynamic susceptibility contrast (DSC) MRI is clinically used to measure brain perfusion by monitoring the dynamic passage of a bolus of contrast agent through the brain. For quantitative analysis of the DSC images, the arterial input function is required. It is known that the original assumption of a linear relation between the R2(*) relaxation and the arterial contrast agent concentration is invalid, although the exact relation is as of yet unknown. Studying this relation in vitro is time-consuming, because of the widespread variations in field strengths, MRI sequences, contrast agents, and physiological conditions. This study aims to simulate the R2(*) versus contrast concentration relation under varying physiological and technical conditions using an adapted version of an open-source simulation tool. The approach was validated with previously acquired data in human whole blood at 1.5 T by means of a gradient-echo sequence (proof-of-concept). Subsequently, the impact of hematocrit, field strength, and oxygen saturation on this relation was studied for both gradient-echo and spin-echo sequences. The results show that for both gradient-echo and spin-echo sequences, the relaxivity increases with hematocrit and field strength, while the hematocrit dependency was nonlinear for both types of MRI sequences. By contrast, oxygen saturation has only a minor effect. In conclusion, the simulation setup has proven to be an efficient method to rapidly calibrate and estimate the relation between R2(*) and gadolinium concentration in whole blood. This knowledge will be useful in future clinical work to more accurately retrieve quantitative information on brain perfusion.  相似文献   
4.
5.
6.
The effects of perazine on the activities of CYP1A2 and CYP3A4 in a primary culture of human hepatocytes of one patient were studied in vitro. The CYPs activities were assessed by measuring the rate of acetanilide 4-hydroxylation (CYP1A2) and cyclosporine A oxidation (CYP3A4) after treatment with TCDD (a CYP1A subfamily inducer) or rifampicin (mainly a CYP3A4 inducer). The amounts of the metabolites formed in hepatocytes were assayed in the extracellular medium using the HPLC method. TCDD and rifampicin induced the formation of 4-hydroxyacetanilide and cyclosporine A metabolites (monohydroxycyclosporine A, dihydroxycyclosporine A, N-desmethylcyclosporine A), respectively. The formation of 4-hydroxyacetanilide was strongly inhibited by three different concentrations of perazine (10, 25 and 50 microM) reaching 8, 3 and 2% of the control value, respectively. In the case of CYP3A4 activity, no such an effect of perazine was observed. Perazine showed only a week inhibition of the activity of cyclosporine A oxidase (to 96-86% of the control value). The obtained results suggest a strong inhibitory effect of perazine on human CYP1A2 activity with predicted Ki value similar to those of the known for CYP1A2 inhibitors, such as furafylline and fluvoxamine.  相似文献   
7.
8.
Investigations on the biology of hepatitis C virus (HCV) have been hampered by the lack of small animal models. Efforts have therefore been directed to designing practical and robust cellular models of human origin able to support HCV replication and production in a reproducible, reliable and consistent manner. Many different models based on different forms of virions and hepatoma or other cell types have been described including virus-like particles, pseudotyped particles, subgenomic and full length replicons, virion productive replicons, immortalised hepatocytes, fetal and adult primary human hepatocytes. This review focuses on these different cellular models, their advantages and disadvantages at the biological and experimental levels, and their respective use for evaluating the effect of antiviral molecules on different steps of HCV biology including virus entry, replication, particles generation and excretion, as well as on the modulation by the virus of the host cell response to infection.  相似文献   
9.
In May 2020, the European Commission announced a proposal for a mandatory front-of-pack label (FoPL) for all European Union (EU) countries. Indeed, FoPLs have been recognized by several public institutions as a cost-effective measure to guide consumers toward nutritionally favorable food products. The aim of this study was to compare the performance and consumer preference of two FoPLs currently proposed or implemented in EU countries, the interpretive format Nutri-Score and the non-interpretive format NutrInform Battery, among Italian consumers. The experimental study was conducted in 2021 on a representative sample of 1064 Italian adults (mean age = 46.5 ± 14.1 years; 48% men). Participants were randomized to either Nutri-Score or NutrInform and had to fill out an online questionnaire testing their objective understanding of the FoPL on three food categories (breakfast products, breakfast cereals and added fats) as well as purchase intention, subjective understanding and perception. Multivariable logistic regressions and t-tests were used to analyze the answers. In terms of the capacity of participants to identify the most nutritionally favorable products, Nutri-Score outperformed NutrInform in all food categories, with the highest odds ratio being observed for added fats (OR = 21.7 [15.3–31.1], p < 0.0001). Overall, with Nutri-Score, Italian participants were more likely to intend to purchase nutritionally favorable products than with NutrInform (OR = 5.29 [4.02–6.97], p < 0.0001). Focusing on olive oil, participants of the Nutri-Score group had higher purchase intention of olive oil compared to those in the NutrInform group (OR = 1.92 [1.42–2.60], p < 0.0001) after manipulating the label. The interpretive format Nutri-Score appears to be a more efficient tool than NutrInform for orienting Italian consumers towards more nutritionally favorable food choices.  相似文献   
10.
The production of the peptide hormones ACTH, α-MSH, and β-endorphin requires proteolytic processing of POMC which is hypothesized to utilize dual cysteine- and subtilisin-like protease pathways, consisting of the secretory vesicle cathepsin L pathway and the well-known subtilisin-like prohormone convertase (PC) pathway. To gain knowledge of these protease components in human pituitary where POMC-derived peptide hormones are produced, this study investigated the presence of these protease pathway components in human pituitary. With respect to the cathepsin L pathway, human pituitary contained cathepsin L of 27–29 kDa and aminopeptidase B of ~64 kDa, similar to those in secretory vesicles of related neuroendocrine tissues. The serpin inhibitor endopin 2, a selective inhibitor of cathepsin L, was also present. With respect to the PC pathway, human pituitary expresses PC1/3 and PC2 of ~60–65 kDa, which represent active PC1/3 and PC2; peptide hormone production then utilizes carboxypeptidase E (CPE) which is present as a protein of ~55 kDa. Analyses of POMC products in human pituitary showed that they resemble those in mouse pituitary which utilizes cathepsin L and PC2 for POMC processing. These findings suggest that human pituitary may utilize the cathepsin L and prohormone convertase pathways for producing POMC-derived peptide hormones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号