首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   417篇
  免费   23篇
  国内免费   1篇
耳鼻咽喉   1篇
儿科学   4篇
妇产科学   8篇
基础医学   92篇
口腔科学   1篇
临床医学   25篇
内科学   90篇
皮肤病学   4篇
神经病学   41篇
特种医学   16篇
外科学   26篇
综合类   2篇
预防医学   32篇
眼科学   3篇
药学   64篇
肿瘤学   32篇
  2023年   5篇
  2022年   8篇
  2021年   13篇
  2020年   3篇
  2019年   7篇
  2018年   11篇
  2017年   7篇
  2016年   12篇
  2015年   6篇
  2014年   14篇
  2013年   16篇
  2012年   24篇
  2011年   38篇
  2010年   28篇
  2009年   16篇
  2008年   39篇
  2007年   32篇
  2006年   20篇
  2005年   23篇
  2004年   24篇
  2003年   21篇
  2002年   20篇
  2001年   7篇
  2000年   9篇
  1999年   7篇
  1998年   5篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   5篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1971年   1篇
排序方式: 共有441条查询结果,搜索用时 15 毫秒
1.
A case of systemic lupus erythematosus (SLE) that developed 2 years after beginning hemodialysis is reported. The patient had not been given any drug implicated in the production of SLE. She had been treated with deferoxamine, an in vitro inhibitory of DNA synthesis. The difficulty of the diagnosis is emphasized. Clinical improvement after prednisone treatment was impressive. SLE may appear even in patients receiving hemodialysis, despite immunological depression derived from chronic uremia.  相似文献   
2.
Axon outgrowth during development and neurotransmitter release depends on exocytotic mechanisms, although what protein machinery is common to or differentiates these processes remains unclear. Here we show that the neural t-SNARE (target-membrane-associated-soluble N-ethylmaleimide fusion protein attachment protein (SNAP) receptor) SNAP-25 is not required for nerve growth or stimulus-independent neurotransmitter release, but is essential for evoked synaptic transmission at neuromuscular junctions and central synapses. These results demonstrate that the development of neurotransmission requires the recruitment of a specialized SNARE core complex to meet the demands of regulated exocytosis.  相似文献   
3.
A surface receptor complex of M r˜65 000 (p65) and ˜95 000 (p95) is expressed in cells of the central nervous system of mice. This receptor is recognized by monoclonal antibody 87.92.6 or by reovirus type 3 haemagglutinin as unnatural ligands. The p65/p95 receptor is expressed mostly in neural embryonic precursors undergoing proliferation, especially those in the S-G2 phase of the cell cycle. Receptor expression decreases progressively throughout embryogenesis to low but detectable levels in the adult brain. Biochemical characterization revealed that the neural p65/p95 receptor complex is indistinguishable from the p65/p95 receptor expressed in T cells, where receptor ligation leads to a mitogenic block. In neural and lymphoid tissues the p65/p95 receptor (or an associated protein) possesses a tyrosine kinase enzymatic activity. Receptor ligation in neural cells resulted in the rapid tyrosine phosphorylation of cellular proteins which are different from substrates phosphorylated in T cells. Differential substrate coupling to the receptor may account for differences in signal transduction and biology between neural cells and T cells. Further study of this receptor complex may help define important features of neural proliferation, differentiation and survival.  相似文献   
4.
Myosin has been purified from chicken pectoralis muscle at various stages of development, from 10 days' incubation to approximately 10 months after hatching. Embryonic myosin from the earliest stage showed a high level of ATPase activity, similar to that obtained for adult pectoralis myosin. Two-dimensional peptide mapping of partial chymotryptic digests showed, however, that is heavy chain is quite different from that of adult fast myosin. The immunological crossreactivity observed between embryonic myosin and adult fast (pectoralis) myosin is therefore due to shared antigenic determinants rather than the presence of any adult isoforms. In an accompanying paper we will show that embryonic myosin at 10 days' incubation is not a single species, but consists of at least two heavy chain isozymes. The minor fraction binds slow light chains preferentially, and appears to be largely responsible for the observed crossreactivity with slow (ALD) myosin. None of the embryonic myosins is equivalent to the adult forms. Prior to hatching, LC3f is present only in very small amounts (less than 5%), and the adult light chain pattern, containing LC1f and LC3f in equimolar amounts, is not generated until after one week post-hatching. At about that time a new heavy chain population is detected, different from either the embryonic heavy chain or the adult heavy chain. The adult heavy chain peptide pattern appears from about three weeks' post-hatching, but a map indistinguishable from that of adult myosin is not observed until about 26 weeks. None of the observed differences in peptide maps can be related to different strains of chicken; pectoralis myosin from adult White Rock gave an identical map to that from White Leghorn. Unexpectedly, posterior latissimus dorsi (PLD) myosin from White Leghorn appears to be different from pectoralis myosin from the same strain, despite the histochemical and immunocytochemical similarity of the two muscles. We conclude that myosin polymorphism is widespread in muscle tissue, and that the expression of myosin isozymes and their subunits is under developmental regulation.  相似文献   
5.
Studies in gene-targeted mice have demonstrated that factor B of the alternative complement pathway plays an important role in several disease models, but an exogenous inhibitor of factor B has not previously been available. We have developed an inhibitory monoclonal antibody directed against a critical epitope on mouse factor B and have tested it in a model of antiphospholipid (aPL) antibody (Ab)-induced fetal loss. Gene-targeted factor B-deficient mice (fB-/-) were injected with a fusion protein comprised of the second and third short consensus repeat (SCR) domains of mouse factor B linked to a mouse IgG1 Fc domain. Hybridomas were made from splenocytes of the immunized mouse. One mAb, designated 1379, produced an IgG1 antibody that inhibited alternative pathway activation in vitro and in vivo by preventing formation of the C3bBb complex. Strikingly, this mAb inhibited alternative pathway activation in serum from mice, rats, humans, monkeys, pigs and horses. Fab fragments made from this mAb also inhibited alternative pathway activation. Epitope mapping demonstrated that this antibody binds to factor B within the third SCR domain. When mAb 1379 was administered to mice that also received human IgG containing antiphospholipid antibodies, it provided significant protection from antiphospholipid antibody-induced complement activation and fetal loss. Thus, this mAb to factor B has broad species reactivity and effectively inhibits alternative pathway activation. The mAb protects mice in an in vivo model of antiphospholipid antibody syndrome, demonstrating the therapeutic potential for the inhibition of factor B in this disease.  相似文献   
6.
The block in differentiation from pro-B to pre-B cells results in a selective defect in the humoral immune response characteristic of human X-linked agammaglobulinemia (XLA). Mutations of Bruton tyrosine kinase (BTK) gene have been identified as the cause of XLA. Mutation detection is the most reliable method for making a definitive diagnosis, except when clinical and laboratory findings are distinctive and coupled with history of X-linked inheritance. To provide a definitive diagnosis to 40 families incorporated in the Argentinian Primary Immunodeficiencies Registry we analysed the BTK gene by SSCP analysis as screening method for XLA, followed by direct sequencing. The molecular defect was localized in 45 patients from 34 unrelated families. From the 34 independent mutations identified, 16 were previously undescribed, 31 were unique mutations, 22 were exonic single nucleotide changes (16 missense and 6 nonsense) and four intronic mutations. Because five families had clinical, immunological and inheritance data sufficient for a definitive diagnosis, our study allowed 37 patients from 29 families previously categorized probable/ possible XLA, have now definitive diagnosis leading to appropriate genetic counseling.  相似文献   
7.
8.

Introduction

Interstitial lung diseases (ILD) and, in particular, idiopathic pulmonary fibrosis, may have a significant impact on patient survival. Recent studies highlight the need for palliative care (PC) in the management of ILD patients. The aim of this study was to determine the current situation of PC in patients in Spain.

Methods

A 36-question survey addressing the main aspects of PC in ILD patients was designed. The survey was sent via email to all members of the Spanish Society of Pulmonology and Thoracic Surgery. Participation was voluntary.

Results

One hundred and sixty-four participants responded to the survey. Ninety-eight percent said they were interested in PC, 46% had received specific training, and 44% reported being responsible for PC in their ILD patients. Symptom control and end-of-life stage were the most frequent reasons for referral to PC teams. Regarding end-of-life, 78% reported consensual agreement with patients on the limitation of therapeutic efforts, 35% helped prepare an end-of-life advance directive, and 22% agreed on the place of death.

Conclusion

Despite the well-known need for PC in patients with ILD and the notable interest of the survey participants in this subject, there are clear formative and organizational gaps that should be addressed to improve care in this area in ILD patients in Spain.  相似文献   
9.
In the United States, between 1 and 3% of women suffer recurrent miscarriages; 50-70% of all conceptions fail. [1,2] Although in the majority of affected women the cause of recurrent miscarriages is unknown, an immune mechanism involving the inappropriate and subsequently injurious recognition of the conceptus by the mother's immune system has been proposed. Murine models have recently been developed that are relevant to this issue. We and others have identified a novel role for complement as an early effector in the pathway leading to pregnancy loss associated with placental inflammation. Indeed, it appears that inhibition of complement activation is an absolute requirement for normal pregnancy, and that in the antiphosphospholid syndrome overwhelming activation of complement triggered by antibodies (Ab) deposited in placenta leads to fetal injury. Identification of complement activation as a mediator of pregnancy loss and definition of the complement components necessary to trigger such injury is likely to lead to a better understanding of its pathogenesis and to new and improved treatments.  相似文献   
10.
Dengue is the most prevalent arboviral disease worldwide, and the four dengue virus (DENV) serotypes circulate endemically in many tropical and subtropical regions. Numerous studies have shown that the majority of DENV infections are inapparent, and that the ratio of inapparent to symptomatic infections (I/S) fluctuates substantially year-to-year. For example, in the ongoing Pediatric Dengue Cohort Study (PDCS) in Nicaragua, which was established in 2004, the I/S ratio has varied from 16.5:1 in 2006–2007 to 1.2:1 in 2009–2010. However, the mechanisms explaining these large fluctuations are not well understood. We hypothesized that in dengue-endemic areas, frequent boosting (i.e., exposures to DENV that do not lead to extensive viremia and result in a less than fourfold rise in antibody titers) of the immune response can be protective against symptomatic disease, and this can explain fluctuating I/S ratios. We formulate mechanistic epidemiologic models to examine the epidemiologic effects of protective homologous and heterologous boosting of the antibody response in preventing subsequent symptomatic DENV infection. We show that models that include frequent boosts that protect against symptomatic disease can recover the fluctuations in the I/S ratio that we observe, whereas a classic model without boosting cannot. Furthermore, we show that a boosting model can recover the inverse relationship between the number of symptomatic cases and the I/S ratio observed in the PDCS. These results highlight the importance of robust dengue control efforts, as intermediate dengue control may have the potential to decrease the protective effects of boosting.

Dengue virus (DENV) is the most prevalent vector-borne viral disease of humans, with recent estimates of around 105 million individuals infected annually (1). It comprises four antigenically distinct serotypes, DENV-1 to -4 (2), and is transmitted to humans by Aedes aegypti and, less frequently, Aedes albopictus mosquitoes (35). While most studies have focused on symptomatic infections, epidemiologic studies have shown that for dengue, the majority of infections are inapparent (3, 5), that is, infections that do not cause detected disease but result in a fourfold or greater rise in antibody titers. However, large fluctuations in annual dengue inapparent:symptomatic (I/S) ratios have been documented worldwide (5). For example, cohort studies able to detect inapparent DENV infections in Nicaragua (69), Peru (10), and Thailand (11) have shown that the I/S ratio of DENV infections ranges widely year to year. In the Pediatric Dengue Cohort Study (PDCS) in Nicaragua, the longest running dengue cohort study, the I/S ratio has varied widely, from 16.5:1 in 2006–2007 (7) to 1.2:1 in 2009–2010 (9). We currently do not understand the drivers of these fluctuations; however, we do know that potential extrinsic drivers, such as differences in replication rates of the predominating serotype, cannot explain them (5). Gaining a mechanistic understanding of these fluctuations in the I/S ratio is likely to be critical for understanding potential drivers of epidemic potential and severe dengue disease and for enacting effective control policies.Extensive research has been conducted into the causes of DENV infection and disease, and there is now some evidence to suggest that immune interactions among viruses and strains may be responsible for fluctuating patterns (1214). In particular, this extensive body of work has shown that severe disease occurs due to immunopathology (4, 15, 16). The most important risk factor for severe dengue disease is secondary heterologous infections (4), due in part to a phenomenon called antibody-dependent enhancement (ADE), in which antibodies from a first infection cross-react with virus from a secondary infection, leading to incomplete neutralization. The resulting partially neutralized immune complexes enhance infection into Fc receptor-bearing cells (17). Low to intermediate titers of cross-reactive anti-DENV antibodies have been shown to enhance subsequent dengue disease severity in human populations (15, 18, 19). However, neutralizing antibody titers are thought to be protective against dengue disease, and a recent study showed that higher preinfection neutralizing antibody titers correlated with lower probability of symptomatic infection in children in the PDCS (20). Importantly, individuals with inapparent heterologous secondary infections had significantly higher preinfection titers than individuals with symptomatic heterologous secondary infections (2022), providing direct evidence that preinfection neutralizing antibody titer is an important determinant of disease outcome. Therefore, it is plausible that the variability in preinfection antibody titer could explain fluctuations in I/S ratios.Recent work has suggested that frequent exposure to DENV may boost the immune response and result in modest increases in neutralizing antibody titer (20), which in turn may protect individuals against symptomatic infection. Evidence for boosting comes from analysis of neutralizing antibodies following primary infection. Here we have defined boosting as exposures to DENV that do not lead to extensive viremia and that result in a less than fourfold rise in antibody titers. Traditionally, the temporary period of cross-protection against heterotypic serotypes following a primary infection is explained by waning cross-reactive antibodies, resulting in a decrease in neutralizing antibody titers (23). However, an analysis of neutralizing antibody titers from the PDCS showed that neutralizing antibody titers did not decrease in the time between primary and secondary DENV infection, but in fact increased marginally (20). A comparable trend was seen in Thailand (24) and in a long-term hospital-based study in Nicaragua (25, 26). The increase in neutralizing antibody titer may be due to immune boosts (20), suggesting that children may be regularly exposed to DENV without experiencing symptoms or meeting the criteria for inapparent infection. There is also evidence of a phenomenon similar to boosting in a human vaccine study (27) and in a study in nonhuman primates (28), where in both cases there was initial exposure that resulted in viremia and seroconversion and a second challenge that did not result in viremia but did result in increased antibody titers. Clearly, in years with a high incidence of dengue, we would expect boosting to occur more frequently, and thus in the years immediately following high dengue incidence, we would expect fewer symptomatic infections, as individuals would be protected against symptomatic infection due to boosts (5).Here we used mathematical models to determine which mechanisms can recover the fluctuations in the I/S ratio in DENV infections. Since our aim was to gain a conceptual qualitative understanding of the role of the impact of a range of mechanisms, we took the classic simplifying approach of not explicitly modeling the mosquito population dynamics. All models are adapted from existing dengue epidemiologic models (12, 29) and include immunity against homologous reinfection, a period of cross-protection following infection, and seasonality. For simplicity, we model the whole population but also present results from a model of the pediatric cohort from which our data are taken. With only these factors, a year-to-year variation in case number is seen, but not a variation in I/S ratio. This model was first modified to include the basic assumption that antibody titer decreases with time since infection and is predictive of infection outcome (20), to evaluate whether I/S fluctuations can be recovered by shorter periods of cross-protection between primary infections and secondary heterotypic infections for inapparent secondary infections than for symptomatic secondary infections, as previously suggested (6, 23).We then explored whether I/S ratio differences can be explained by protection against symptomatic disease due to boosting of the immune response. We define boosts as exposures to homotypic or heterotypic DENV serotypes that “boost” the immune response and result in a modest rise in antibody titers (less than fourfold rise, below the threshold of classification as an inapparent infection), possibly due to limited viremia. It is important to note that with boosting, the antibody titer that we measure might not fall. Although it was previously thought that homologous DENV infection confers lifelong immunity against the infecting serotype (30), recent work has shown that homologous DENV reinfections do occur (31). We hypothesize that a boost in antibody titer can protect an individual during subsequent infections, resulting in the development of inapparent infection instead of symptomatic infection. We show that a boosting model can recover the fluctuations in the I/S ratio, recover the inverse relationship between the number of symptomatic cases and the I/S ratio in the PDCS, and recover a positive relationship between the I/S ratio in a given year and the number of cases in the previous year, as has been previously noted (5, 11). These models suggest that boosts may be occurring frequently in endemic areas and need to be considered when constructing effective dengue control policies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号