首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   27篇
  国内免费   2篇
儿科学   1篇
基础医学   22篇
临床医学   20篇
内科学   90篇
神经病学   16篇
外科学   5篇
综合类   2篇
眼科学   1篇
药学   1篇
肿瘤学   48篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2016年   3篇
  2015年   5篇
  2014年   5篇
  2013年   4篇
  2012年   12篇
  2011年   8篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   9篇
  2006年   5篇
  2005年   3篇
  2004年   5篇
  2003年   3篇
  2001年   8篇
  2000年   3篇
  1999年   9篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   8篇
  1994年   7篇
  1993年   1篇
  1992年   15篇
  1991年   10篇
  1990年   4篇
  1989年   3篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1983年   2篇
  1981年   5篇
  1980年   5篇
  1979年   9篇
  1978年   5篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1973年   2篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
排序方式: 共有206条查询结果,搜索用时 15 毫秒
1.
Temporal control, or how organisms guide movements in time to achieve behavioral goals, depends on dopamine signaling. The medial prefrontal cortex controls many goal-directed behaviors and receives dopaminergic input primarily from the midbrain ventral tegmental area. However, this system has never been linked with temporal control. Here, we test the hypothesis that dopaminergic projections from the ventral tegmental area to the prefrontal cortex influence temporal control. Rodents were trained to perform a fixed-interval timing task with an interval of 20 s. We report several results: first, that decreasing dopaminergic neurotransmission using virally mediated RNA interference of tyrosine hydroxylase impaired temporal control, and second that pharmacological disruption of prefrontal D1 dopamine receptors, but not D2 dopamine receptors, impaired temporal control. We then used optogenetics to specifically and selectively manipulate prefrontal neurons expressing D1 dopamine receptors during fixed-interval timing performance. Selective inhibition of D1-expressing prefrontal neurons impaired fixed-interval timing, whereas stimulation made animals more efficient during task performance. These data provide evidence that ventral tegmental dopaminergic projections to the prefrontal cortex influence temporal control via D1 receptors. The results identify a critical circuit for temporal control of behavior that could serve as a target for the treatment of dopaminergic diseases.  相似文献   
2.
3.
4.
Neuronal calcium (Ca2+)-binding proteins 1 and 2 (NECAB1/2) are members of the phylogenetically conserved EF-hand Ca2+-binding protein superfamily. To date, NECABs have been explored only to a limited extent and, so far, not at all at the spinal level. Here, we describe the distribution, phenotype, and nerve injury-induced regulation of NECAB1/NECAB2 in mouse dorsal root ganglia (DRGs) and spinal cord. In DRGs, NECAB1/2 are expressed in around 70% of mainly small- and medium-sized neurons. Many colocalize with calcitonin gene-related peptide and isolectin B4, and thus represent nociceptors. NECAB1/2 neurons are much more abundant in DRGs than the Ca2+-binding proteins (parvalbumin, calbindin, calretinin, and secretagogin) studied to date. In the spinal cord, the NECAB1/2 distribution is mainly complementary. NECAB1 labels interneurons and a plexus of processes in superficial layers of the dorsal horn, commissural neurons in the intermediate area, and motor neurons in the ventral horn. Using CLARITY, a novel, bilaterally connected neuronal system with dendrites that embrace the dorsal columns like palisades is observed. NECAB2 is present in cell bodies and presynaptic boutons across the spinal cord. In the dorsal horn, most NECAB1/2 neurons are glutamatergic. Both NECAB1/2 are transported into dorsal roots and peripheral nerves. Peripheral nerve injury reduces NECAB2, but not NECAB1, expression in DRG neurons. Our study identifies NECAB1/2 as abundant Ca2+-binding proteins in pain-related DRG neurons and a variety of spinal systems, providing molecular markers for known and unknown neuron populations of mechanosensory and pain circuits in the spinal cord.Calcium (Ca2+) plays a crucial role in many and diverse cellular processes, including neurotransmission (1). Glutamate and neuropeptides are neurotransmitters released from the central terminals of dorsal root ganglion (DRG) neurons in the spinal dorsal horn, where signals for different sensory modalities, including pain, are conveyed to higher centers (212). Neurotransmitter release is tightly regulated by Ca2+-dependent SNARE proteins whose activity is regulated by Ca2+-binding proteins (CaBPs) (1, 7, 13).Parvalbumin (PV), calbindin D-28K (CB), calretinin (CR), and secretagogin (Scgn) are extensively studied EF-hand CaBPs, and they have also emerged as valuable anatomical markers for morphologically and functionally distinct neuronal subpopulations (1417). The expression of CaBPs in DRG neurons has been thoroughly studied (18). Moreover, neuronal Ca2+ sensor 1 and downstream regulatory element-antagonist modulator (DREAM) are also EF-hand Ca2+-binding proteins in DRGs and the spinal cord (19, 20). Despite these advances, a CaBP has so far not been characterized in the majority of small- and medium-sized DRG neurons, many of which represent nociceptors.The subfamily of neuronal Ca2+-binding proteins (NECABs) consists of three members (NECAB1–NECAB3), probably as a result of gene duplication (21). NECABs are also EF-hand proteins, with one pair of EF-hand motifs in the N terminus and a putative antibiotic biosynthesis monooxygenase domain in the C terminus, which are linked by a NECAB homogeneous region (22). NECAB1/2 are restricted to the nervous system, whereas NECAB3 is also expressed in the heart and skeletal muscle (21).NECAB1 was first identified as the target protein of synaptotagmin I C2A-domain by affinity chromatography, with its expression restricted to layer 4 cortical pyramidal neurons, inhibitory interneurons, and hippocampal CA2 pyramidal cells in mouse brain (21, 23). The gene of the second member was cloned from mouse and initially named Necab. It encodes a 389-aa (NECAB2) (24). NECAB2 was identified as a downstream target of Pax6 in mouse retina, which is involved in retinal development (24, 25), as well as being a binding partner for the adenosine A2A receptor (22). Furthermore, an interaction between NECAB2 and metabotropic glutamate receptor 5 (mGluR5) was demonstrated in rat hippocampal pyramidal cells, possibly regulating mGluR5’s coupling to its signaling machinery (26). Finally, NECAB3, also known as XB51, was isolated as an interacting target for the neuron-specific X11-like protein and is possibly involved in the pathogenesis of Alzheimer’s disease (27, 28).Very recently, NECAB1/2 were shown to have complementary expression patterns in mouse hippocampus at the mRNA and protein levels, whereas NECAB3 is broadly distributed in the hippocampus (29). NECAB1-expressing cells were seen throughout the cell-sparse layers of Ammon’s horn and the hilus of the dentate gyrus. In contrast, NECAB2 is enriched in pyramidal cells of the CA2 region. A minority of NECAB1+ neurons were GABAergic yet did not coexpress PV, CB, or CR (29).Here, we investigated the expression of NECAB1/2 in mouse DRGs and spinal cord using quantitative PCR (qPCR), immunohistochemistry (also combined with CLARITY) (30), and Western blotting. We compared the distribution of NECABs with that of the four CaBPs restricted to neurons, PV, CB, CR, or Scgn. NECAB+ neurons in the spinal dorsal horn were phenotyped using transgenic mice harboring genetic markers for excitatory [vesicular glutamate transporter 2 (VGLUT2)] (31) or inhibitory [glutamate decarboxylase 67 (GAD67)] (32) cell identities. Finally, the effect of peripheral nerve injury was analyzed.  相似文献   
5.
The structure-guided design of chloride-conducting channelrhodopsins has illuminated mechanisms underlying ion selectivity of this remarkable family of light-activated ion channels. The first generation of chloride-conducting channelrhodopsins, guided in part by development of a structure-informed electrostatic model for pore selectivity, included both the introduction of amino acids with positively charged side chains into the ion conduction pathway and the removal of residues hypothesized to support negatively charged binding sites for cations. Engineered channels indeed became chloride selective, reversing near −65 mV and enabling a new kind of optogenetic inhibition; however, these first-generation chloride-conducting channels displayed small photocurrents and were not tested for optogenetic inhibition of behavior. Here we report the validation and further development of the channelrhodopsin pore model via crystal structure-guided engineering of next-generation light-activated chloride channels (iC++) and a bistable variant (SwiChR++) with net photocurrents increased more than 15-fold under physiological conditions, reversal potential further decreased by another ∼15 mV, inhibition of spiking faithfully tracking chloride gradients and intrinsic cell properties, strong expression in vivo, and the initial microbial opsin channel-inhibitor–based control of freely moving behavior. We further show that inhibition by light-gated chloride channels is mediated mainly by shunting effects, which exert optogenetic control much more efficiently than the hyperpolarization induced by light-activated chloride pumps. The design and functional features of these next-generation chloride-conducting channelrhodopsins provide both chronic and acute timescale tools for reversible optogenetic inhibition, confirm fundamental predictions of the ion selectivity model, and further elucidate electrostatic and steric structure–function relationships of the light-gated pore.Discovery and engineering of the microbial opsin genes not only has stimulated basic science investigation into the structure–function relationships of proteins involved in light-triggered ion flow but also has opened up opportunities for biological investigation (reviewed in ref. 1) via the technique of optogenetics, which involves targeting these genes and corresponding optical stimuli to control activity within specified types of cells within intact and functioning biological systems. For example, optogenetics has been used to identify causally the brain cells and projections involved in behaviors relevant to memory formation, affective states, and motor function, among many other discoveries (24). For the channelrhodopsins, an important member of this protein family widely used in optogenetics (5, 6), the light-activated cation-conducting channel pore has been the subject of structural investigation, both because of curiosity regarding the physical properties of its ion conduction and because the creation of inhibitory channels had been sought for optogenetic applications. Converging lines of work recently achieved the latter goal; resolving the high-resolution structure of channelrhodopsin (7) allowed a principled structure-guided approach to engineering for chloride selectivity by testing an electrostatic model for pore function (8, 9). Subsequently, by screening the genome of the Guillardia theta microbe, two naturally occurring light-gated chloride-conducting channelrhodopsins (10) were identified.Because optogenetic control of behavior has not yet been demonstrated with chloride channelrhodopsins, and to test further integrative ideas regarding pore function from structural considerations as shown here, we sought to design and test the next generation of enhanced chloride channels (iC++ and SwiChR++). Along the way, we provide the initial test of the hypothesis that light-activated channels will be more efficient tools than pumps for optogenetic neuronal inhibition at the cellular level, demonstrate the initial utility of light-gated chloride channels in controlling behavior in freely moving animals, and reveal key principles regarding the functional selectivity of light-gated ion channel pores.  相似文献   
6.
Relapse after autologous bone marrow transplantation for chronic myelogenous leukemia (CML) can be due either to the persistence of leukemia cells in systemic tissues following preparative therapy, or due to the persistence of leukemia cells in the autologous marrow used to restore marrow function after intensive therapy. To help distinguish between these two possible causes of relapse, we used safety-modified retroviruses, which contain the bacterial resistance gene NEO, to mark autologous marrow cells that had been collected from patients early in the phase of hematopoietic recovery after in vivo chemotherapy. The cells were then subjected to ex vivo CD34 selection following collection and 30% of the bone marrow were exposed to a safety-modified virus. This marrow was infused after delivery of systemic therapy, which consisted of total body irradiation (1,020 cGy), cyclophosphamide (120 mg/kg), and VP-16 (750 mg/m2). RT PCR assays specific for the bacterial NEO mRNA, which was coded for by the virus, and the bcr-abl mRNA showed that in two evaluable CML patients transplanted with marked cells, sufficient numbers of leukemia cells remained in the infused marrow to contribute to systemic relapse. In addition, both normal and leukemic cells positive for the retroviral transgenome persisted in the systemic circulation of the patients for at least 280 days posttransplant showing that the infused marrow was responsible for the return of hematopoiesis following the preparative therapy. This observation shows that it is possible to use a replication-incompetent safety-modified retrovirus in order to introduce DNA sequences into the hematopoietic cells of patients undergoing autologous bone marrow transplantation. Moreover, this data suggested that additional fractionation procedures will be necessary to reduce the probability of relapse after bone marrow transplantation in at least the advanced stages of the disease in CML patients undergoing autologous bone marrow transplantation procedures.  相似文献   
7.
Chronic myelogenous leukemia (CML) is a hematologic malignancy characterized by the presence of the Philadelphia (Ph) chromosome. Bcr- abl, the fusion gene associated with the Ph chromosome, expresses a p210bcr-abl protein that promotes a selective expansion of mature myeloid progenitor cells. Methylphosphonate (MP) oligodeoxynucleotides complementary to specific regions of the bcr-abl mRNA were incorporated in liposomes. We studied the effects of liposomal MP (L-MP) on the growth inhibition of CML-like cell lines. L-MP targeted to the breakpoint junctions of the bcr-abl mRNA inhibited the growth of CML cells. Fifty percent inhibition was achieved at approximately 1 mumol/L of L-MP oligonucleotide concentrations. The inhibitory effect was selective because growth inhibition was observed only with CML but not with control cell lines. Moreover, CML cell growth inhibition was dependent on the sequence of the MP oligodeoxynucleotides incorporated in the liposomes. The growth inhibition of CML cells by L-MP resulted from selective inhibition of the expression of the p210bcr-abl protein.  相似文献   
8.
Somatic cell hybrids were derived by fusion of mouse erythroleukemia cells with fractionated human marrow enriched in erythroblasts, or with chinese hamster fetal liver erythroid cells. Such interspecific hybrid cells, when isolated in suspension culture, had retained nearly all the mouse chromosomes and had lost most of the human or chinese hamster chromosomes. However, two such hybrids (one human, the other hamster) studied 4-6 weeks after fusion, were found to contain several non-mouse chromosomes. RNA extracted from the human marrow x erythroleukemia hybrid annealed equally to both human and mouse globin complementary DNA, indicating that coexpression of the globin genes of each species had occurred in the hybrid cells. Mouse and human mRNA were found to accumulate only after incubation of the cells in 2% dimethylsulfoxide. The chinese hamster x erythroleukemia hybrid appeared to contain a double complement of mouse chromosomes in addition to several chinese hamster chromosomes. After 7 days of incubation in 2% dimethylsulfoxide, [3H]leucine was incorporated into chinese hamster beta-globin and the mouse globin chains. Thus, globin genes from differentiated cells, when introduced into spontaneously proliferating erythroleukemia cells, may be expressed after exposure of the resulting hybrid cells to an agent capable of inducing hemoglobin synthesis in the erythroleukemia cell.  相似文献   
9.
A polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) assay was used to identify the exons which contained point mutations in the conserved regions (exons 4-8) of the p53 gene in 49 acute myelogenous leukaemia (AML) patients. SSCP analysis in our study was consistent with the results of subsequent direct DNA sequencing in detecting point mutational change in exons 5 and 8 of one AML patient and in exons 7 and 8 of two additional AML patients. The mutations were located at codons 245 and 273, which have been found in many other tumours, and codons 178 and 290, which have not been reported previously. All of the p53 proteins in which we detected point mutations were immunoprecipitated by the p53 monoclonal antibody PAb 240, which has been shown to recognize a mutant conformation of p53 protein. Thus, our results indicate that functional inactivation of the p53 gene by point mutational change might be one of the mechanisms underlying disease progression of AML.  相似文献   
10.
OBJECTIVE To investigate the function of the alpha v beta 5 integrin in hematopoietic cells.
METHODS Tissue culture, integrin expression vectors, gene transfer, polymerase chain reaction (PCR), apoptosis analyses and cytometic analysis were made on hematopoietic cells.
RESULTS The beta 5 integrin cDNA was not expressed in hematopoietic cells following exposure to the beta 5 integrin retrovirus vector pG beta 5CHT. Unbalanced expression of the alpha v beta 3 and alpha v beta 5 integrins occurred during apoptosis induced by serum depletion and upon differentiation. The treatment of hematopoietic cells with anti-alpha v beta 5 monoclonal antibody inhibited apoptosis induced by serum depletion. Inducible expression of the beta 5 integrin cDNA in the hematopoietic cell line K562 caused cellular proliferation inhibition.
CONCLUSIONS The alpha v beta 5 integrin cDNA in hematopoietic cells can inhibit the proliferation of the hematopoietic cell, cause the differentiation of the hematopoietic cells and induce the apoptosis of the hematopoietic cells.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号