首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
基础医学   2篇
口腔科学   2篇
外科学   2篇
  2019年   1篇
  2013年   1篇
  2007年   1篇
  2005年   2篇
  2003年   1篇
排序方式: 共有6条查询结果,搜索用时 6 毫秒
1
1.
2.
3.
Systemically administered fibroblast growth factors (FGFs) show anabolic effects on bone formation in animals, whereas in vitro cell culture studies have demonstrated that FGFs block mineralized bone nodule formation. These apparently contradictory outcomes indicate that the nature of FGF action is complex and that the biological effect of FGFs may depend on the differentiation stage of osteoblasts, interaction with other cytokines, or the length and mode of exposure to factors. Thus, we have utilized primary calvarial bone cell populations at different maturation phases to determine their responses to 2, FGF-9, and BMP-2, the factors expressed in bone. FGF-2 and FGF-9 stimulated proliferation of the cell populations consisting of more mature osteoblasts, but not those with undifferentiated precursor cells. Continuous treatment with FGF-2/-9 inhibited expression of several osteoblast marker genes and mineralization. However, brief pretreatment with FGF-2/-9 or sequential treatment with FGF-2/-9 followed by BMP-2 led to marked stimulation of mineralization, suggesting that FGFs enhance the intrinsic osteogenic potential. Furthermore, FGF-2 and FGF-9 increased expression of other osteogenic factors BMP-2 and TGFbeta-1. Meanwhile, blocking endogenous FGF signaling, using a virally transduced dominant-negative FGF receptor (FgfR), resulted in drastically reduced expression of the BMP-2 gene, demonstrating for the first time that endogenous FGF/FgfR signaling is a positive upstream regulator of the BMP-2 gene in calvarial osteoblasts. In contrast, expression of a BMP antagonist noggin was inhibited by FGF-2 and FGF-9. Thus, collective data from this study suggest that FGF/FgfR signaling enhances the intrinsic osteogenic potential by selectively expanding committed osteogenic cell populations as well as inversely regulating BMP-2 and noggin gene expression.  相似文献   
4.
Various activating mutations of FgfR2 have been linked to a number of craniosynostosis syndromes, suggesting that FGFR2-mediated signaling plays significant roles in intramembranous bone formation. To define (i) the roles of FGFR2-mediated signaling in osteogenesis and (ii) bone cell functions affected by abnormal signaling induced by craniosynostosis mutations, chicken calvarial osteoblasts were infected with replication competent avian sarcoma viruses expressing FgfR2 with dominant negative (DN), P253R (Apert), or C278F (Pfeiffer and Crouzon) mutation. Analyses of the infected osteoblasts revealed that attenuated FGF/FGFR signaling by DN-FgfR2 resulted in a decrease in cell proliferation and accelerated mineralization. In contrast, the C278F mutation, which causes ligand-independent activation of the receptor, significantly stimulated cell proliferation and inhibited mineralization. Interestingly, the P253R mutation, which does not cause ligand-independent activation of the receptor, showed a weaker mitogenic effect than the C278F mutation and did not inhibit mineralization. Gene expression analysis also revealed diverse effects of C278F and P253R mutations on expression of several osteogenic genes. Based on these results, we conclude that one of the major functions of FGFR2 is to mediate mitogenic signals in osteoblasts and that distinctively different cellular mechanisms underlie the pathogenesis of craniosynostosis phenotypes resulting from P253R and C278F mutations of the FGFR2 gene.  相似文献   
5.
Various activating mutations of FgfR2 have been linked to a number of craniosynostosis syndromes, suggesting that FGFR2-mediated signaling plays significant roles in intramembranous bone formation. To define (i) the roles of FGFR2-mediated signaling in osteogenesis and (ii) bone cell functions affected by abnormal signaling induced by craniosynostosis mutations, chicken calvarial osteoblasts were infected with replication competent avian sarcoma viruses expressing FgfR2 with dominant negative (DN), P253R (Apert), or C278F (Pfeiffer and Crouzon) mutation. Analyses of the infected osteoblasts revealed that attenuated FGF/FGFR signaling by DN-FgfR2 resulted in a decrease in cell proliferation and accelerated mineralization. In contrast, the C278F mutation, which causes ligand-independent activation of the receptor, significantly stimulated cell proliferation and inhibited mineralization. Interestingly, the P253R mutation, which does not cause ligand-independent activation of the receptor, showed a weaker mitogenic effect than the C278F mutation and did not inhibit mineralization. Gene expression analysis also revealed diverse effects of C278F and P253R mutations on expression of several osteogenic genes. Based on these results, we conclude that one of the major functions of FGFR2 is to mediate mitogenic signals in osteoblasts and that distinctively different cellular mechanisms underlie the pathogenesis of craniosynostosis phenotypes resulting from P253R and C278F mutations of the FGFR2 gene.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号