首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   4篇
基础医学   19篇
临床医学   3篇
内科学   3篇
药学   2篇
  2013年   1篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   5篇
  1996年   1篇
排序方式: 共有27条查询结果,搜索用时 171 毫秒
1.
We have previously shown that activated C1s complement and activated T cells cleave beta2-microglobulin (beta2m) in vitro leading to the formation of desLys58 beta2m. This process can specifically be inhibited by C1-esterase inhibitor (C1-inh). Furthermore we showed that exogenously added desLys58 beta2m in nanomolar amounts to a one-way allogenic mixed lymphocyte culture (MLC) increased the endogenous production of IL-2 and the generation of allo-specific cytotoxic T lymphocytes. C1-inh was purified from fresh human plasma and added to human or murine MLC and mitogen-stimulated lymphocyte cultures grown in the presence of complement-inactivated serum. Read-outs were cell proliferation, lymphokine production and development of T cell-mediated cytotoxicity. We found that addition of C1-inh to MLC and mitogen- exposed murine and human lymphocyte cultures inhibited proliferation, the development of allospecific cytotoxic activity, and changed the endogenous production of IL-2, IL-4, IL-10, IL-12 and IFN-gamma. These data clearly demonstrate a regulatory function of C1-inh on T cell- mediated immune functions.   相似文献   
2.
When conjugated to various proteins, the nontoxic B-chain of cholera toxin (CTB) significantly increases the ability of these proteins to induce immunological tolerance after oral administration. Here, we investigated if a nonconjugated form of CTB enhances the induction of immune tolerance after oral insulin administration. Induction of immunological tolerance was studied after oral administration of insulin preparations in three mouse models; an insulin/ovalbumin coimmunization model, a model of virus-induced diabetes in transgenic RIP-LCMV-NP mice and in nonobese diabetic (NOD) mice serving as a model of spontaneous diabetes. In the immunization model, we demonstrate that mixing with CTB increases the tolerogenic potential of insulin, approximately 10 fold. Titration of the CTB concentration in this system revealed that an insulin : CTB ratio of 100 : 1 was optimal for the induction of bystander suppression. Further studies revealed that this insulin : CTB ratio also was optimal for the prevention of diabetes in a virus-induced, transgenic diabetes model. In addition, the administration of this optimal insulin-CTB preparation significantly prevented the onset of diabetes in old NOD mice with established islet infiltration. The data presented here demonstrate that CTB, even in its unconjugated form, functions as a mucosal adjuvant, increasing the specific tolerogenic effect of oral insulin.  相似文献   
3.
The nontoxic B subunit of cholera toxin (CTB) has been used as an adjuvant in experimental systems of mucosal vaccination. However, the mechanisms behind its adjuvant effects remain unclear. Here, we have used an ex vivo system to elucidate these mechanisms in antigen-specific T cells. Using splenocytes from keyhole limpet haemocyanin (KLH)-immunized mice, initial experiments showed that recombinant CTB (rCTB) did not affect the KLH-specific proliferation of splenocytes isolated from mice immunized 2 weeks earlier. However, rCTB strongly enhanced the KLH-specific proliferation of splenocytes from mice immunized with KLH 4 weeks prior. This adjuvant effect was dose-dependent, with maximum at 30-300 ng/ml rCTB. At higher doses of CTB this effect declined because of the induction of apoptosis. Using antibody depletion and coculture systems, we show that rCTB directly costimulates KLH-specific CD4+ and CD8+ T-cell proliferation but not B cells. Enzyme-linked immunospot (ELISPOT) assays revealed that rCTB also enhanced the KLH-specific CD4+ T-cell-mediated production of interleukin-2 (IL-2), IL-4 and interferon-gamma(IFN-gamma) by four to fivefold. Characterizing the adjuvant effect of rCTB in vivo confirmed the results above, i.e. rCTB mediated a twofold increase in the ex vivo T-cell response when used as a classical adjuvant in a secondary, but not in a primary KLH-immunization regimen. Together these data show that rCTB can act as a strong adjuvant, by directly costimulating antigen-primed CD4+ and CD8+ T cell in a dose-dependent manner. This new insight might be valuable in the future rational design of bacterial toxin-based vaccines.  相似文献   
4.
The mammalian immune system eliminates pathogens by generating a specific antibody response. Polyclonality is a key feature of this immune response: the immune system produces antibodies which bind to different structures on a given pathogen thereby increasing the likelihood of its elimination. The vast majority of current recombinant antibody drugs rely on monospecific monoclonal antibodies. Inherently, such antibodies do not represent the benefits of polyclonality utilized by a natural immune system and this has impeded the identification of efficacious antibody drugs against infectious agents, including viruses. The development of novel technologies has allowed the identification and manufacturing of antigen-specific recombinant polyclonal human antibodies, so-called symphobodies. This review describes the rationale for designing drugs based on symphobodies against pathogenic viruses, including HIV, vaccinia and smallpox virus, and respiratory syncytial virus.  相似文献   
5.
The product of the protooncogene Vav1 participates in multiple signaling pathways and is a critical regulator of antigen-receptor signaling in B and T lymphocytes, but its role during in vivo natural killer (NK) cell differentiation is not known. Here we have studied NK cell development in Vav1-/- mice and found that, in contrast to T and NK-T cells, the absolute numbers of phenotypically mature NK cells were not reduced. Vav1-/- mice produced normal amounts of interferon (IFN)-gamma in response to Listeria monocytogenes and controlled early infection but showed reduced tumor clearance in vivo. In vitro stimulation of surface receptors in Vav1-/- NK cells resulted in normal IFN-gamma production but reduced tumor cell lysis. Vav1 was found to control activation of extracellular signal-regulated kinases and exocytosis of cytotoxic granules. In contrast, conjugate formation appeared to be only mildly affected, and calcium mobilization was normal in Vav1-/- NK cells. These results highlight fundamental differences between proximal signaling events in T and NK cells and suggest a functional dichotomy for Vav1 in NK cells: a role in cytotoxicity but not for IFN-gamma production.  相似文献   
6.
Scid mice transplanted either with a gut wall graft or with low numbers of purified CD4+ T cells from immunocompetent syngeneic donor mice show clinical signs of IBD 3–4 months post-transplantation. The disease is mediated by mucosa-infiltrating CD4+ TCRαβ+ T cells. The pathology of 52 individual colon segments obtained from 20 gut wall- or CD4+ T cell-transplanted diseased scid mice was evaluated by histology and the numbers of infiltrating immunoglobulin-containing cells were determined. In particular, cells positive for IgM, IgA and non-inflammatory immunoglobulin isotypes such as IgG1 and IgG2b were found to accumulate in colon segments displaying the most severe histopathology, including inflammatory cellular infiltration, epithelial hyperplasia and ulcerative lesions. Compared with colon segments of normal C.B-17 mice, the lesional scid colon shows increased levels of cells positive for the IgG classes. Faecal extracts of the CD4+ T cell-transplanted scid mice revealed the presence of all six murine immunoglobulin isotypes. Disease progression was accompanied by an increased level of excreted IgM and IgG3 and decreased levels of IgA. It is concluded that locally secreted immunoglobulins may play an immunomodulating role in the pathological changes observed in the present model of T cell-induced inflammatory bowel disease.  相似文献   
7.
Our earlier investigations have demonstrated a critical difference in the efficacy of orally administered porcine compared to human or mouse insulin (no effect) in preventing type I diabetes in two distinct experimental models. Based on these findings one has to assume that certain insulins might not be suitable for the induction of oral 'tolerance'/bystander suppression, which might be one cause for recent failures in human oral antigen trials. Here we demonstrate that coupling to the non-toxic subunit of cholera toxin (CTB) can abolish these differences in efficacy between human and porcine insulin. As expected, an added benefit was the much smaller oral antigen dose required to induce CD4+ insulin-B specific regulatory cells that bystander-suppress autoaggressive responses. Mechanistically we found that uptake or transport of insulin-CTB conjugates in the gut occurs at least partially via binding to GM-1, which would explain the enhanced clinical efficacy. Both B chains bound well to major histocompatibility complex (MHC) class II, indicating comparable immunological potential once uptake and processing has occurred. Thus, our findings delineate a pathway to overcome issues in oral antigen choice for prevention of type I diabetes.  相似文献   
8.
Current antibody therapeutics can be grouped into two generations, each distinguished by a unique feature of the immune system: diversity and specificity. Antibodies from human blood (immunoglobulin) represent the first generation, and are characterized by the natural diversity of human antibody responses. The second generation consists of recombinant monoclonal antibodies (mAbs), which are characterized by high specificity toward a single, often well-described antigen. The natural immune response comprises a plurality of specificities, many of which do not compete for binding, whereas molecules in a mAb all compete for binding to the same epitope. Thus, the epitope is more likely to become a limiting factor for mAb binding to complex targets compared with a polyclonal antibody. Also, epitope-escape by mutation or natural variation is less likely to be a problem for polyclonal antibodies. Technologies attempting to develop truly human recombinant antigen-specific polyclonal antibodies, such as the Sympress technology, are closing a natural circle between the first generations of antibody technologies.  相似文献   
9.
The pentameric B-subunit of cholera toxin (CTB) can be used as an efficient mucosal carrier of either immunogenic or tolerogenic T-cell epitopes. In this study a series of fusions was constructed between the genes encoding CTB and the B-chain of human insulin (InsB). The resulting fusion proteins were expressed in Escherichia coli and isolated as cytoplasmic inclusion bodies that were then dissolved and assembled in vitro. GM1 enzyme-linked immunosorbent assay (ELISA), sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analyses showed that the protein construct in which InsB was fused to the C-terminus of a CTB monomer (CI) assembled into structures that both bound to the receptor GM1 ganglioside and reacted with monoclonal antibodies to CTB and insulin. Fusion of InsB to the N-terminus of CTB resulted in protein that could not assemble into pentameric CTB. In vitro assays showed that the CI fusion protein was 300-fold more potent than native insulin at inducing interleukin-2 (IL-2) production by an insulin-specific T-cell hybridoma. When administered orally, the CI fusion protein induced efficient immunological suppression of ovalbumin-specific T-cell responses in mice co-immunized parenterally with insulin and ovalbumin. These results demonstrate the stability, GM1 receptor-binding activity and antigenic authenticity of the CI fusion protein as well as its ability to elicit insulin-specific T-cell responses in vitro. In addition, we demonstrate that the CI fusion protein induces efficient immunosuppression after oral administration, raising the possibility of using such constructs in the treatment of type-1 diabetes.  相似文献   
10.
The CC-chemokine receptor 5 (CCR5) has recently been described as a surface marker of human T cells producing type 1 (Th1) cytokines. Here we confirm that CCR5 is expressed on human Th1 but not on Th2 T-cell clones. Using intracellular cytokine staining, we show that alloantigen specific CD4+ T-cell lines derived from a CCR5-deficient individual (delta32 allele homozygote) contain high numbers of both interferon gamma (IFN-gamma) and interleukin (IL)-2 producing cells, low numbers of IL-10 producing cells and no IL4 or IL-5 producing cells when stimulated with phorbol ester and ionomycin in vitro. These results were similar to those obtained from alloantigen specific CD4+ T-cell lines derived from CCR5 expressing individuals. An enzyme-linked immunoabsorbent assay (ELISA) confirmed that the Th1 cytokine-positive cells from the CCR5-deficient individual were able to produce equal amounts of cytokines when compared to T-cell lines from CCR5-expressing individuals, These results demonstrate that CCR5-negative T cells display the same capacity of Th1 T-cell differentiation as T cells derived from CCR5-expressing individuals. Thus, CCR5 expression is not essential for differentiation of human Th1 T cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号