首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   4篇
儿科学   2篇
基础医学   14篇
临床医学   2篇
内科学   2篇
神经病学   15篇
外科学   5篇
  2020年   1篇
  2018年   2篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   6篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1979年   4篇
  1973年   1篇
排序方式: 共有40条查询结果,搜索用时 203 毫秒
1.
Summary Turning a rabbit on a turn-table for a few degrees induces compensatory eye-movements and results in an asymmetry of tonus in the optomotor system. If the visual input is discontinued (darkness), this asymmetry decays and the eyes drift back to the mid-position within 12–18 sec. The equalization of such asymmetries of tonus under normal conditions and under curare is described. Tonus asymmetries induced by tilting the animals about the longitudinal axis are neither compensated under visual, nor under non-visual, conditions. Recordings were taken from oculomotor neurons, and changes of their firing frequencies were used as a measure for eye movements.A preliminary report was given at the spring meeting of the German Physiological Society 1973.Supported by the Deutsche Forschungsgemeinschaft, SFB 33.  相似文献   
2.
3.
4.
Mutations in the DMD gene, encoding the dystrophin protein, are responsible for the dystrophinopathies Duchenne Muscular Dystrophy (DMD), Becker Muscular Dystrophy (BMD), and X-linked Dilated Cardiomyopathy (XLDC). Mutation analysis has traditionally been challenging, due to the large gene size (79 exons over 2.2 Mb of genomic DNA). We report a very large aggregate data set comprised of DMD mutations detected in samples from patients enrolled in the United Dystrophinopathy Project, a multicenter research consortium, and in referral samples submitted for mutation analysis with a diagnosis of dystrophinopathy. We report 1,111 mutations in the DMD gene, including 891 mutations with associated phenotypes. These results encompass 506 point mutations (including 294 nonsense mutations) and significantly expand the number of mutations associated with the dystrophinopathies, highlighting the utility of modern diagnostic techniques. Our data supports the uniform hypermutability of CGA>TGA mutations, establishes the frequency of polymorphic muscle (Dp427m) protein isoforms and reveals unique genomic haplotypes associated with “private” mutations. We note that 60% of these patients would be predicted to benefit from skipping of a single DMD exon using antisense oligonucleotide therapy, and 62% would be predicted to benefit from an inclusive multiexonskipping approach directed toward exons 45 through 55. Hum Mutat 30:1657–1666, 2009. © 2009 Wiley-Liss, Inc.  相似文献   
5.
We report 24 unrelated individuals with deletions and 17 additional cases with duplications at 10q11.21q21.1 identified by chromosomal microarray analysis. The rearrangements range in size from 0.3 to 12 Mb. Nineteen of the deletions and eight duplications are flanked by large, directly oriented segmental duplications of >98% sequence identity, suggesting that nonallelic homologous recombination (NAHR) caused these genomic rearrangements. Nine individuals with deletions and five with duplications have additional copy number changes. Detailed clinical evaluation of 20 patients with deletions revealed variable clinical features, with developmental delay (DD) and/or intellectual disability (ID) as the only features common to a majority of individuals. We suggest that some of the other features present in more than one patient with deletion, including hypotonia, sleep apnea, chronic constipation, gastroesophageal and vesicoureteral refluxes, epilepsy, ataxia, dysphagia, nystagmus, and ptosis may result from deletion of the CHAT gene, encoding choline acetyltransferase, and the SLC18A3 gene, mapping in the first intron of CHAT and encoding vesicular acetylcholine transporter. The phenotypic diversity and presence of the deletion in apparently normal carrier parents suggest that subjects carrying 10q11.21q11.23 deletions may exhibit variable phenotypic expressivity and incomplete penetrance influenced by additional genetic and nongenetic modifiers.  相似文献   
6.
Introduction: MYH7 gene mutations are related to a heterogeneous group of skeletal and cardiac myopathies. Methods: We evaluated clinical and muscle MRI changes in patients with mutations in the rod domain of MYH7, including 1 with mosaicism and 3 with novel missense mutations. Results: Patients presented in childhood with a distal and axial phenotype. Biopsy findings were variable. Half of the cases displaying some type of core pathology, including minicores and eccentric cores. Most patients demonstrated internal bands of infiltration (“inverted‐collagen‐VI sign”) in multiple muscles, particularly the soleus, and prominent atrophy and fatty infiltration of the tongue and the paraspinal, gluteus minimus, sartorius, gracilis, tibialis anterior, and extensor digitorum longus muscles. Discussion: Muscle imaging findings in patients with axial involvement provide significant clues permitting the distinction between MYH7‐related myopathies and other axial myopathies such as those related to SEPN1 and LMNA genes. Muscle Nerve 58 : 224–234, 2018  相似文献   
7.
Acute posttraumatic headache is common and can evolve into chronic posttraumatic headache, which is associated with medication overuse and disability. However, there are few studies to guide treatment management of acute posttraumatic headache. We describe an adolescent with acute posttraumatic headache that did not respond to several initial medications but had rapid and sustained improvement in headache and associated migrainous features with subcutaneous sumatriptan.  相似文献   
8.
9.
10.
The aim of this study was to evaluate the spectrum of muscle involvement on Magnetic Resonance Imaging (MRI) in patients with collagen VI related disorders. Nineteen patients with genetically confirmed collagen VI related disorders, 10 with Bethlem myopathy and 9 with Ullrich congenital muscular dystrophy (CMD), had muscle MRI of their legs using T1 sequences through calves and thighs. In patients with Bethlem myopathy the vasti muscles appeared to be the most frequently and most strikingly affected thigh muscles, with a rim of abnormal signal at the periphery of each muscle and relative sparing of the central part. Another frequent finding was the presence of a peculiar involvement of the rectus femoris with a central area of abnormal signal within the muscle. Patients with Ullrich CMD had a more diffuse involvement of the thigh muscles with relative sparing of sartorius, gracilis and adductor longus. In 8 of the 9 patients with Ullrich CMD, we also observed the peripheral rim of the vastus lateralis and the central area in the rectus femoris observed in patients with Bethlem myopathy. At calf level the results were more variable but a significant proportion of patients with both Bethlem myopathy (8/10) and Ullrich CMD (6/9) showed a rim of abnormal signal at the periphery of soleus and gastrocnemii. Bethlem myopathy and Ullrich CMD patients have distinct patterns of muscle involvement on MRI with some overlap between the two forms. Our results suggest that muscle MR may be used, as an additional tool, to identify patients with collagen VI related disorders. This information is even more important in the patients with a typical Ullrich CMD clinical phenotype but with normal collagen expression of VI in muscle and/or skin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号