首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
基础医学   4篇
内科学   5篇
药学   1篇
  2013年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有10条查询结果,搜索用时 0 毫秒
1
1.
2.
Cell-fluid and cell-cell interactions are critical components of many physiological and pathological conditions in the microvasculature. Similarly, particle-cell interactions play an important role in targeted delivery of therapeutics to tissue. Development of in vitro fluidic devices to mimic these microcirculatory processes has been a critical step forward in our understanding of the inflammatory process, developing of nano-particulate drug carriers, and developing realistic in vitro models of the microvasculature and its surrounding tissue. However, widely used parallel plate flow based devices and assays have a number of important limitations for studying the physiological conditions in vivo. In addition, these devices are resource hungry and time consuming for performing various assays. Recently developed, more realistic, microfluidic based devices have been able to overcome many of these limitations. In this review, an overview of the fluidic devices and their use in studying the effects of shear forces on cell-cell and cell-particle interactions is presented. In addition, use of mathematical models and Computational Fluid Dynamics (CFD) based models for interpreting the complex flow patterns in the microvasculature is highlighted. Finally, the potential of 3D microfluidic devices and imaging for better representing in vivo conditions under which cell-cell and cell-particle interactions take place is discussed.  相似文献   
3.
4.
Cell-based biosensors (CBBs) utilize the principles of cell-based assays (CBAs) by employing living cells for detection of different analytes from environment, food, clinical, or other sources. For toxin detection, CBBs are emerging as unique alternatives to other analytical methods. The main advantage of using CBBs for probing biotoxins and toxic agents is that CBBs respond to the toxic exposures in the manner related to actual physiologic responses of the vulnerable subjects. The results obtained from CBBs are based on the toxin-cell interactions, and therefore, reveal functional information (such as mode of action, toxic potency, bioavailability, target tissue or organ, etc.) about the toxin. CBBs incorporate both prokaryotic (bacteria) and eukaryotic (yeast, invertebrate and vertebrate) cells. To create CBB devices, living cells are directly integrated onto the biosensor platform. The sensors report the cellular responses upon exposures to toxins and the resulting cellular signals are transduced by secondary transducers generating optical or electrical signals outputs followed by appropriate read-outs. Examples of the layout and operation of cellular biosensors for detection of selected biotoxins are summarized.  相似文献   
5.
Vascular endothelium offers a variety of therapeutic targets for the treatment of cancer, cardiovascular diseases, inflammation, and oxidative stress. Significant research has been focused on developing agents to target the endothelium in diseased tissues. This includes identification of antibodies against adhesion molecules and neovascular expression markers or peptides discovered using phage display. Such targeting molecules also have been used to deliver nanoparticles to the endothelium of the diseased tissue. Here we report, based on in vitro and in vivo studies, that the specificity of endothelial targeting can be enhanced further by engineering the shape of ligand-displaying nanoparticles. In vitro studies performed using microfluidic systems that mimic the vasculature (synthetic microvascular networks) showed that rod-shaped nanoparticles exhibit higher specific and lower nonspecific accumulation under flow at the target compared with their spherical counterparts. Mathematical modeling of particle–surface interactions suggests that the higher avidity and specificity of nanorods originate from the balance of polyvalent interactions that favor adhesion and entropic losses as well as shear-induced detachment that reduce binding. In vivo experiments in mice confirmed that shape-induced enhancement of vascular targeting is also observed under physiological conditions in lungs and brain for nanoparticles displaying anti–intracellular adhesion molecule 1 and anti-transferrin receptor antibodies.  相似文献   
6.
We compare simulation to analysis and experiments for flows in three microneedle geometries—straight, bent and filtered. The bent microneedle was found to have the highest fluid carrying capacity of 0.082 ml/sec at 138 kPa with a Reynolds number of 738. A microneedle with a built in microfilter had a flow rate of 0.07 ml/sec. Although the throughput of these microneedles is low they compare favorably with other microneedle designs. Laminar flow models were found to accurately predict the flow behavior through the microneedles. All computational modeling was performed with the CFDRC CFD-ACE + suite of software tools.  相似文献   
7.
8.
We have developed a methodology to study particle adhesion in the microvascular environment using microfluidic, image-derived microvascular networks on a chip accompanied by Computational Fluid Dynamics (CFD) analysis of fluid flow and particle adhesion. Microfluidic networks, obtained from digitization of in vivo microvascular topology were prototyped using soft-lithography techniques to obtain semicircular cross sectional microvascular networks in polydimethylsiloxane (PDMS). Dye perfusion studies indicated the presence of well-perfused as well as stagnant regions in a given network. Furthermore, microparticle adhesion to antibody coated networks was found to be spatially non-uniform as well. These findings were broadly corroborated in the CFD analyses. Detailed information on shear rates and particle fluxes in the entire network, obtained from the CFD models, were used to show global adhesion trends to be qualitatively consistent with current knowledge obtained using flow chambers. However, in comparison with a flow chamber, this method represents and incorporates elements of size and complex morphology of the microvasculature. Particle adhesion was found to be significantly localized near the bifurcations in comparison with the straight sections over the entire network, an effect not observable with flow chambers. In addition, the microvascular network chips are resource effective by providing data on particle adhesion over physiologically relevant shear range from even a single experiment. The microfluidic microvascular networks developed in this study can be readily used to gain fundamental insights into the processes leading to particle adhesion in the microvasculature.  相似文献   
9.
OBJECTIVE: Upregulation of adhesion molecules on endothelial cells following irradiation has been shown, but the functional significance of this upregulation in various endothelial cell lines is not clear. We have developed an in vitro flow model to study the functional consequences of the radiation-induced upregulation of E-selectin and intercellular adhesion molecule (ICAM-1). METHODS: Human dermal microvascular endothelial cells (HDMEC), human umbilical vein endothelial cells (HUVEC), or transformed human microvascular endothelial cells (HMEC-1) were grown in 35-mm dishes and irradiated with a single dose of 10 Gy. HL-60 (human promyelocytic leukemia) cells were perfused over the irradiated endothelial cells in a parallel plate flow chamber at shear stress ranging from 0.5 to 2.0 dynes/cm2. Flow cytometry was used to quantify the expression of E-selectin and ICAM-1 on the various endothelial cells. RESULTS: Flow cytomeric analysis revealed an upregulation of ICAM-1 expression on all three cell types postirradiation (post-IR), and an upregulation of E-selectin expression only on HDMEC post-IR. E-selectin expression was detected on control HDMEC, but at a lower level than that detected on post-IR HDMEC. Flow assays revealed a significant increase in the number of rolling and firmly adherent HL-60 cells on post-IR HDMEC at shear stress < or =1.5 dynes/cm2; pretreatment of control and irradiated HDMEC with antibodies to E-selectin and ICAM-1 significantly diminished the number of rolling and firmly adherent HL-60 cells, respectively. No rolling or firm adhesion of HL-60 cells was observed on HUVEC or HMEC-1 monolayers post-IR. CONCLUSION: These findings suggest that ICAM-1 is upregulated on irradiated HDMEC, HUVEC, and HMEC-1. E-selectin is upregulated to a functional level only on irradiated HDMEC, and not on irradiated HUVEC or HMEC-1.  相似文献   
10.
Existing microfluidic devices, e.g. parallel plate flow chambers, do not accurately depict the geometry of microvascular networks in vivo. We have developed a synthetic microvascular network (SMN) on a polydimethalsiloxane (PDMS) chip that can serve as an in vitro model of the bifurcations, tortuosities, and cross-sectional changes found in microvascular networks in vivo. Microvascular networks from a cremaster muscle were mapped using a modified Geographical Information System, and then used to manufacture the SMNs on a PDMS chip. The networks were cultured with bovine aortic endothelial cells (BAEC), which reached confluency 3–4 days after seeding. Propidium iodide staining indicated viable and healthy cells showing normal behavior in these networks. Anti-ICAM-1 conjugated 2-μm microspheres adhered to BAEC cells activated with TNF-α in significantly larger numbers compared to control IgG conjugated microspheres. This preferential adhesion suggests that cultured cells retain an intact cytokine response in the SMN. This microfluidic system can provide novel insight into characterization of drug delivery particles and dynamic flow conditions in microvascular networks.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号