首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
基础医学   1篇
  1998年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Local calcium transients (‘Ca2+ sparks’) are thought to be elementary Ca2+ signals in heart, skeletal and smooth muscle cells. Ca2+ sparks result from the opening of a single, or the coordinated opening of many, tightly clustered ryanodine receptor (RyR) channels in the sarcoplasmic reticulum (SR). In arterial smooth muscle, Ca2+ sparks appear to be involved in opposing the tonic contraction of the blood vessel. Intravascular pressure causes a graded membrane potential depolarization to approximately ?40 mV, an elevation of arterial wall [Ca2+]i and contraction (‘myogenic tone’) of arteries. Ca2+ sparks activate calcium-sensitive K+ (KCa) channels in the sarcolemmal membrane to cause membrane hyperpolarization, which opposes the pressure induced depolarization. Thus, inhibition of Ca2+ sparks by ryanodine, or of KCa channels by iberiotoxin, leads to membrane depolarization, activation of L -type voltage-gated Ca2+ channels, and vasoconstriction. Conversely, activation of Ca2+ sparks can lead to vasodilation through activation of KCa channels. Our recent work is aimed at studying the properties and roles of Ca2+ sparks in the regulation of arterial smooth muscle function. The modulation of Ca2+ spark frequency and amplitude by membrane potential, cyclic nucleotides and protein kinase C will be explored. The role of local Ca2+ entry through voltage-dependent Ca2+ channels in the regulation of Ca2+ spark properties will also be examined. Finally, using functional evidence from cardiac myocytes, and histological evidence from smooth muscle, we shall explore whether Ca2+ channels, RyR channels, and KCa channels function as a coupled unit, through Ca2+ and voltage, to regulate arterial smooth muscle membrane potential and vascular tone.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号