首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   7篇
  国内免费   1篇
儿科学   3篇
基础医学   28篇
口腔科学   1篇
临床医学   7篇
内科学   9篇
神经病学   20篇
特种医学   10篇
外科学   4篇
预防医学   11篇
药学   10篇
中国医学   1篇
肿瘤学   7篇
  2021年   1篇
  2020年   2篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   6篇
  2011年   9篇
  2010年   6篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   7篇
  2002年   5篇
  2001年   2篇
  2000年   9篇
  1999年   12篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1985年   2篇
排序方式: 共有111条查询结果,搜索用时 46 毫秒
1.
Synaptic potentiation induced by high frequency stimulation was investigated by recording field excitatory postsynaptic potentials (f-EPSPs) in rat hippocampal slices. Potentiation consisted of a transient period of decaying f-EPSPs (short-term potentiation, STP) that led to a plateau of continuously potentiated f-EPSPs (long-term potentiation, LTP). Here we show that a previously unknown type of transient, use-dependent, long-lasting potentiation (t-LTP) can account for STP. t-LTP could be stored for more than 6 h and its decay was caused by synaptic activation. Both the expression and the decay of t-LTP were input specific. t-LTP was induced differently from conventional LTP in that the amplitude of t-LTP was dependent upon the stimulation frequency, whereas the magnitude of LTP was dependent on the number of stimuli in the induction train. The decay of t-LTP could not be prevented by the blockage of glutamate receptors, but was prevented by the blockage of stimulus-evoked neurotransmitter release, suggesting that t-LTP is expressed presynaptically. Paired-pulse stimulation experiments showed that the decay of t-LTP was mediated by a decrease in the probability of neurotransmitter release. The decline of t-LTP could be prolonged by the activation of NMDA receptors. Hence, both single and paired-pulse stimuli prolonged the decline of the t-LTP. This decline could be prevented by high frequency burst stimulation (200 Hz). We conclude that t-LTP allows dynamic modulation of synaptic transmission by providing not only spatial association but also temporal convergence between synaptic inputs. Therefore, t-LTP might be a substrate for the encoding of synaptic memory.  相似文献   
2.
BACKGROUND: Two genome scans for susceptibility loci for type 1 diabetes using large collections of families have recently been reported. Apart from strong linkage in both studies of the HLA region on chromosome 6p, clear consistent evidence for linkage was not observed at any other loci. One possible explanation for this is a high degree of locus heterogeneity in type 1 diabetes, and we hypothesised that the sex of affected offspring, age of diagnosis, and parental origin of shared alleles may be the bases of heterogeneity at some loci. METHODS: Using data from a genome wide linkage study of 356 affected sib pairs with type 1 diabetes, we performed linkage analyses using parental origin of shared alleles in subgroups based on (1) sex of affected sibs and (2) age of diagnosis. RESULTS: Among the results obtained, we observed that evidence for linkage to IDDM4 on chromosome 11q13 occurred predominantly from opposite sex, rather than same sex sib pairs. At a locus on chromosome 4q, evidence for linkage was observed in sibs where one was diagnosed above the age of 10 years and the other diagnosed below 10 years of age. CONCLUSIONS: We show that heterogeneity tests based on age of diagnosis, sex of affected subject, and parental origin of shared alleles may be helpful in reducing locus heterogeneity in type 1 diabetes. If repeated in other samples, these findings may assist in the mapping of susceptibility loci for type 1 diabetes. Similar analyses can be recommended in other complex diseases.  相似文献   
3.
Genetic linkage studies of type 1 diabetes have produced a number of conflicting results, suggesting a high degree of locus heterogeneity in this disease. Approaches which model such heterogeneity will increase the power to fine map susceptibility loci. Here, using data from a genome scan of 356 affected sib pairs with type 1 diabetes, we performed heterogeneity analysis based on similarity of age at diagnosis of the sib pairs. We observed linkage to the region on chromosome 4p16.3 in sib pairs both diagnosed over the age of 10 years, whilst there was no evidence for linkage in sib pairs diagnosed before age 10 years. In contrast the sib pairs diagnosed before the age of 10 years demonstrated linkage to IDDM10, on chromosome 10p. Age of diagnosis-based heterogeneity analyses in complex diseases may be particularly helpful in mapping some susceptibility loci.  相似文献   
4.
A mouse model of diabetes shows gender dimorphism in the cumulative incidence of diabetes. Based on this, evidence for genetic linkage to IDDM13 on chromosome arm 2q was reported to be greater in type 1 diabetes families where there was a predominance of affected female offspring compared with families with a predominance of affected male offspring. Our objective was to investigate whether the sex of affected offspring affects evidence for linkage to susceptibility loci. Data from a genome scan of 356 affected sibpair families with type 1 diabetes were analysed to determine if there is differential evidence for linkage in families with affected children of a particular sex. At markers on chromosomes 3, 5, 7, 9, 11, and 19, we found a number of regions where the evidence for linkage is greater in families with affected sibpairs of a particular sex. Thus, evidence for linkage in families with affected sibpairs of the same gender suggests the presence of additional susceptibility loci. Several biological explanations are possible for these findings, including X and Y linkage, effects of sex hormones on gene expression, and quasi-linkage between sex chromosomes and autosomes.  相似文献   
5.
Neurons in trigeminal and geniculate ganglia extend neurites that share contiguous target tissue fields in the fungiform papillae and taste buds of the mammalian tongue and thereby have principal roles in lingual somatosensation and gustation. Although functional differentiation of these neurons is central to formation of lingual sensory circuits, there is little known about electrophysiological properties of developing trigeminal and geniculate ganglia or the extrinsic factors that might regulate neural development. We used whole cell recordings from embryonic day 16 rat ganglia, maintained in culture as explants for 3-10 days with neurotrophin support to characterize basic properties of trigeminal and geniculate neurons over time in vitro and in comparison to each other. Each ganglion was cultured with the neurotrophin that supports maximal neuron survival and that would be encountered by growing neurites at highest concentration in target fields. Resting membrane potential and time constant did not alter over days in culture, whereas membrane resistance decreased and capacitance increased in association with small increases in trigeminal and geniculate soma size. Small gradual differences in action potential properties were observed for both ganglion types, including an increase in threshold current to elicit an action potential and a decrease in duration and increase in rise and fall slopes so that action potentials became shorter and sharper with time in culture. Using a period of 5-8 days in culture when neural properties are generally stable, we compared trigeminal and geniculate ganglia and revealed major differences between these embryonic ganglia in passive membrane and action potential characteristics. Geniculate neurons had lower resting membrane potential and higher input resistance and smaller, shorter, and sharper action potentials with lower thresholds than trigeminal neurons. Whereas all trigeminal neurons produced a single action potential at threshold depolarization, 35% of geniculate neurons fired repetitively. Furthermore, all trigeminal neurons produced TTX-resistant action potentials, but geniculate action potentials were abolished in the presence of low concentrations of TTX. Both trigeminal and geniculate neurons had inflections on the falling phase of the action potential that were reduced in the presence of various pharmacological blockers of calcium channel activation. Use of nifedipine, omega-conotoxin-MVIIA and GVIA, and omega-agatoxin-TK indicated that currents through L-, N-, and P/Q- type calcium channels participate in the action potential inflection in embryonic trigeminal and geniculate neurons. The data on passive membrane, action potential, and ion channel characteristics demonstrate clear differences between trigeminal and geniculate ganglion neurons at an embryonic stage when target tissues are innervated but receptor organs have not developed or are still immature. Therefore these electrophysiological distinctions between embryonic ganglia are present before neural activity from differentiated receptive fields can influence functional phenotype.  相似文献   
6.
7.
A high degree of locus heterogeneity is likely in alcoholism, and linkage heterogeneity analysis may be helpful in mapping susceptibility loci. The genetic contribution to alcoholism in females may be higher than in males, and therefore sex of affected individuals was used in linkage analysis. Families with female alcoholics demonstrated evidence for linkage to chromosomes 10p11-p15 and 21q22.1-q22.2 while those with male alcoholics did not provide evidence for linkage to these regions. Sharing of maternal and paternal alleles was also investigated separately, and evidence for linkage of maternal alleles on chromosomes 1 and 8, and paternal alleles on chromosome 2 was observed, suggesting parental origin effects. Mapping of complex traits may benefit from tests of linkage heterogeneity based on sex, and parental origin.  相似文献   
8.
9.
International Urology and Nephrology - Intermittent catheterization (IC) is a proven effective long-term bladder management strategy for individuals who have lower urinary tract dysfunction. This...  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号