首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   457篇
  免费   49篇
  国内免费   5篇
耳鼻咽喉   1篇
儿科学   18篇
妇产科学   4篇
基础医学   71篇
口腔科学   1篇
临床医学   50篇
内科学   114篇
皮肤病学   18篇
神经病学   47篇
特种医学   21篇
外科学   50篇
综合类   1篇
预防医学   38篇
眼科学   2篇
药学   29篇
肿瘤学   46篇
  2024年   2篇
  2023年   7篇
  2022年   10篇
  2021年   37篇
  2020年   24篇
  2019年   33篇
  2018年   43篇
  2017年   27篇
  2016年   24篇
  2015年   23篇
  2014年   34篇
  2013年   38篇
  2012年   50篇
  2011年   47篇
  2010年   20篇
  2009年   25篇
  2008年   18篇
  2007年   13篇
  2006年   10篇
  2005年   6篇
  2004年   9篇
  2003年   3篇
  2002年   5篇
  2001年   1篇
  1999年   1篇
  1970年   1篇
排序方式: 共有511条查询结果,搜索用时 15 毫秒
1.
European Radiology - The strongest adverse prognostic factor in myxoid/round cell liposarcomas (MRC-LPS) is the presence of a round cell component above 5% within the tumor bulk. Its identification...  相似文献   
2.
3.
Prevention Science - Screening is an essential prevention practice for a number of health conditions. However, screening coverage remains generally low. Studies that investigate determinants of...  相似文献   
4.
5.
6.
7.
8.
9.
Plasmodium falciparum and Toxoplasma gondii are widely studied parasites in phylum Apicomplexa and the etiological agents of severe human malaria and toxoplasmosis, respectively. These intracellular pathogens have evolved a sophisticated invasion strategy that relies on delivery of proteins into the host cell, where parasite-derived rhoptry neck protein 2 (RON2) family members localize to the host outer membrane and serve as ligands for apical membrane antigen (AMA) family surface proteins displayed on the parasite. Recently, we showed that T. gondii harbors a novel AMA designated as TgAMA4 that shows extreme sequence divergence from all characterized AMA family members. Here we show that sporozoite-expressed TgAMA4 clusters in a distinct phylogenetic clade with Plasmodium merozoite apical erythrocyte-binding ligand (MAEBL) proteins and forms a high-affinity, functional complex with its coevolved partner, TgRON2L1. High-resolution crystal structures of TgAMA4 in the apo and TgRON2L1-bound forms complemented with alanine scanning mutagenesis data reveal an unexpected architecture and assembly mechanism relative to previously characterized AMA–RON2 complexes. Principally, TgAMA4 lacks both a deep surface groove and a key surface loop that have been established to govern RON2 ligand binding selectivity in other AMAs. Our study reveals a previously underappreciated level of molecular diversity at the parasite–host-cell interface and offers intriguing insight into the adaptation strategies underlying sporozoite invasion. Moreover, our data offer the potential for improved design of neutralizing therapeutics targeting a broad range of AMA–RON2 pairs and apicomplexan invasive stages.Phylum Apicomplexa comprises >5,000 parasitic protozoan species, many of which cause devastating diseases on a global scale. Two of the most prevalent species are Toxoplasma gondii and Plasmodium falciparum, the causative agents of toxoplasmosis and severe human malaria, respectively (1, 2). The obligate intracellular apicomplexan parasites lead complex and diverse lifestyles that require invasion of many different cell types. Despite this diversity of target host cells, most apicomplexans maintain a generally conserved mechanism for active invasion (3). The parasite initially glides over the surface of a host cell and then reorients to place its apical end in close contact to the host-cell membrane. After this initial attachment, a circumferential ring of adhesion (termed the moving or tight junction) is formed, through which the parasite actively propels itself while concurrently depressing the host-cell membrane to create a nascent protective vacuole (4).Formation of the moving junction relies on a pair of highly conserved parasite proteins: rhoptry neck protein 2 (RON2) and apical membrane antigen 1 (AMA1). Initially, parasites discharge RON2 into the host cell membrane where an extracellular portion (domain 3; D3) serves as a ligand for AMA1 displayed on the parasite surface (58). Intriguingly, recent studies have shown that the AMA1–RON2 complex is an attractive target for therapeutic intervention (912). The importance of the AMA1–RON2 pairing is also reflected in the observation that many apicomplexan parasites encode functional paralogs that are generally expressed in a stage-specific manner (1315). We recently showed that, in addition to AMA1 and RON2, T. gondii harbors three additional AMA paralogs and two additional RON2 paralogs (14, 15): TgAMA2 forms a functional invasion complex with TgRON2 (15), TgAMA3 (also annotated as SporoAMA1) selectively coordinates TgRON2L2 (14), and TgAMA4 binds TgRON2L1 (15). Despite substantial sequence divergence, structural characterization of all AMA–RON2D3 complexes solved to date [TgAMA1–TgRON2D3 (16), PfAMA1–PfRON2D3 (17), and TgAMA3–TgRON2L2D3 (14)] reveal a largely conserved architecture and binding paradigm. Intriguingly, however, sequence analysis indicates that TgAMA4 and TgRON2L1 are likely to adopt substantially divergent structures with an atypical assembly mechanism.To investigate the functional implications of the AMA4–RON2L1 complex in T. gondii, we first established that TgAMA4 is part of a highly divergent AMA clade that includes the functionally important malaria vaccine candidate Plasmodium merozoite apical erythrocyte-binding ligand (MAEBL) (1820) and that TgRON2L1 displays a similar divergence consistent with coevolution of receptor and ligand. We then show that TgAMA4 and TgRON2L1 form a high-affinity binary complex and probe its overall architecture and underlying mechanism of assembly using crystal structures of TgAMA4 in the apo and TgRON2L1D3 bound forms. Finally, we show proof of principle that TgAMA4 and TgRON2L1 form a functional pairing capable of supporting host-cell invasion. Collectively, our study reveals exceptional molecular diversity at the parasite–host-cell interface that we discuss in the context of the unique invasion barriers encountered by the sporozoite.  相似文献   
10.
Pathogenic complex genomic rearrangements are being increasingly characterized at the nucleotide level, providing unprecedented opportunities to evaluate the complexities of mutational mechanisms. Here, we report the molecular characterization of a complex duplication–triplication rearrangement involving exons 45–60 of the DMD gene. Inverted repeats facilitated this complex rearrangement, which shares common genomic organization with the recently described duplication‐inverted triplication–duplication (DUP–TRP/INV‐DUP) events; specifically, a 690‐kb region comprising DMD exons from 45 to 60 was duplicated in tandem, and another 46‐kb segment containing exon 51 was inserted inversely in between them. Taking into consideration (1) the presence of a predicted PRDM9 binding site in the near vicinity of the junction involving two inverted L1 elements and (2) the inherent properties of X–Y chromosome recombination during male meiosis, we proposed an alternative two‐step model for the generation of this X‐linked DMD DUP–TRP/INV‐DUP event.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号