首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   2篇
基础医学   1篇
临床医学   6篇
内科学   6篇
特种医学   3篇
药学   1篇
  2018年   1篇
  2015年   1篇
  2014年   5篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.

Background

Although increased volume of pericardial fat has been associated with decreased cardiac function, it is unclear whether this association is mediated by systemic overall obesity or direct regional fat interactions. We hypothesized that if local effects dominate, left ventricular (LV) function would be most strongly associated with pericardial fat that surrounds the left rather than the right ventricle (RV).

Methods

Female obese subjects (n = 60) had cardiovascular magnetic resonance (CMR) scans to obtain measures of LV function and pericardial fat volumes. LV function was obtained using the cine steady state free precession imaging in short axis orientation. The amount of pericardial fat was determined volumetrically by the cardiac gated T1 black blood imaging and normalized to body surface area.

Results

In this study cohort, LV fat correlated with several LV hemodynamic measurements including cardiac output (r = -0.41, p = 0.001) and stroke volume (r = -0.26, p = 0.05), as well as diastolic functional parameters including peak-early-filling rate (r = -0.38, p = 0.01), early late filling ratio (r = -0.34, p = 0.03), and time to peak-early-filling (r = 0.34, p = 0.03). These correlations remained significant even after adjusting for the body mass index and the blood pressure. However, similar correlations became weakened or even disappeared between RV fat and LV function. LV function was not correlated with systemic plasma factors, such as C-reactive protein (CRP), B-type natriuretic peptide (BNP), Interleukin-6 (IL-6), resistin and adiponectin (all p > 0.05).

Conclusions

LV hemodynamic and diastolic function was associated more with LV fat as compared to RV or total pericardial fat, but not with systemic inflammatory markers or adipokines. The correlations between LV function and pericardial fat remained significant even after adjusting for systemic factors. These findings suggest a site-specific influence of pericardial fat on LV function, which could imply local secretion of molecules into the underlying tissue or an anatomic effect, both mechanisms meriting future evaluation.  相似文献   
2.
Continued uptake of modified low-density lipoproteins (LDL) by the scavenger receptor, CD68, of activated macrophages is a crucial process in the development of atherosclerotic plaques and leads to the formation of foam cells. Eight-weeks-old male Apolipoprotein E-deficient (ApoE-/-) mice (n=6) were fed a high-fat diet for 12 weeks. C57BL/6J wildtype (WT) mice served as controls (n=6). Positron emission tomography (PET) with an acquisition time of 1800s (NanoPET/CT scanner; Mediso, Hungary & Bioscan, USA) was carried out 24h after intravenous tail vein administration of 50µl 64Cu-CD68-Fc (~20-30µg labeled protein/mouse containing approximately 10-12MBq 64Cu-CD68-Fc per mouse). Three days after PET/CT, all mice received an intravenous administration of 0.2 mmol/kg body weight of a gadolinium-based elastin-binding contrast agent to assess plaque burden and vessel wall remodeling. Two hours after injection, mice were imaged in a 3T clinical MR scanner (Philips Healthcare, Best, NL) using a dedicated single loop surface coil (23mm). Enhanced 64Cu-CD68-Fc uptake was found in the aortic arches of ApoE-/- compared to WT mice (ApoE-/- mice:10.5±1.5Bq/cm³ vs. WT mice: 2.1±0.3Bq/cm³; P=0.002). Higher gadolinium-based elastin-binding contrast agent uptake was also detected in the aortic arch of ApoE-/- compared to WT mice using R1 maps (R1=1.47±0.06 s-1 vs. 0.92±0.05 s-1; P <0.001). Radiolabeled scavenger receptor (64Cu-CD68-Fc) may help to target foam cell rich plaques with high content of oxidized LDL. This novel imaging biomarker tool may have potential to identify unstable plaques and for risk stratification.  相似文献   
3.
4.
5.

Background

Dynamic first pass contrast-enhanced myocardial perfusion is the standard CMR method for the estimation of myocardial blood flow (MBF) and MBF reserve in man, but it is challenging in rodents because of the high temporal and spatial resolution requirements. Hyperemic first pass myocardial perfusion CMR during vasodilator stress in mice has not been reported.

Methods

Five C57BL/6 J mice were scanned on a clinical 3.0 Tesla Achieva system (Philips Healthcare, Netherlands). Vasodilator stress was induced via a tail vein catheter with an injection of dipyridamole. Dynamic contrast-enhanced perfusion imaging (Gadobutrol 0.1 mmol/kg) was based on a saturation recovery spoiled gradient echo method with 10-fold k-space and time domain undersampling (k-t PCA). One week later the mice underwent repeat anaesthesia and LV injections of fluorescent microspheres at rest and at stress. Microspheres were analysed using confocal microscopy and fluorescence-activated cell sorting.

Results

Mean MBF at rest measured by Fermi-function constrained deconvolution was 4.1 ± 0.5 ml/g/min and increased to 9.6 ± 2.5 ml/g/min during dipyridamole stress (P = 0.005). The myocardial perfusion reserve was 2.4 ± 0.54. The mean count ratio of stress to rest microspheres was 2.4 ± 0.51 using confocal microscopy and 2.6 ± 0.46 using fluorescence. There was good agreement between cardiovascular magnetic resonance CMR and microspheres with no significant difference (P = 0.84).

Conclusion

First-pass myocardial stress perfusion CMR in a mouse model is feasible at 3 Tesla. Rest and stress MBF values were consistent with existing literature and perfusion reserve correlated closely to microsphere analysis. Data were acquired on a 3 Tesla scanner using an approach similar to clinical acquisition protocols, potentially facilitating translation of imaging findings between rodent and human studies.  相似文献   
6.
Current techniques to visualize the arterial vessel wall are limited in coverage because most of them are flow dependent. In this study, we present a novel technique for flow‐independent vessel wall imaging that takes advantage of the differences in T2 relaxation time of arterial blood and surrounding tissues using the T2‐preparation prepulse. The technique is based on the acquisition and subtraction of two data sets, one obtained with and one without T2‐preparation prepulse. This approach allows for nulling the signal of arterial blood while maintaining signal from muscle and vessel wall. The result of the subtraction is a flow‐independent black‐blood vessel wall image. To minimize the motion sensitivity of the subtraction step, we developed an interleaved acquisition for the T2‐preparation prepulse and non‐T2‐preparation prepulse images, which allows obtaining coronary vessel wall images from a whole‐heart acquisition with minimal misregistration artefacts. In this article, we present the technique and preliminary results in healthy subjects. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
7.
8.
Sepsis is a common life-threatening clinical syndrome involving complications as a result of severe infection. A cardinal feature of sepsis is inflammation that results in oxidative stress. Sepsis in wild-type mice induced oxidative activation of cGMP-dependent protein kinase 1 alpha (PKG Iα), which increased blood vessel dilation and permeability, and also lowered cardiac output. These responses are typical features of sepsis and their combined effect is a lowering of blood pressure. This hypotension, a hallmark of sepsis, resulted in underperfusion of end organs, resulting in their damage. A central role for PKG Iα oxidative activation in injury is supported by oxidation-resistant Cys42Ser PKG Iα knock-in mice being markedly protected from these clinical indices of injury during sepsis. We conclude that oxidative activation of PKG Iα is a key mediator of hypotension and consequential organ injury during sepsis.  相似文献   
9.

Background

To utilize a rabbit model of plaque disruption to assess the accuracy of different magnetic resonance sequences [T1-weighted (T1W), T2-weighted (T2W), magnetization transfer (MT) and diffusion weighting (DW)] at 11.7 T for the ex vivo detection of size and composition of thrombus associated with disrupted plaques.

Methods

Atherosclerosis was induced in the aorta of male New Zealand White rabbits (n = 17) by endothelial denudation and high-cholesterol diet. Subsequently, plaque disruption was induced by pharmacological triggering. Segments of infra-renal aorta were excised fixed in formalin and examined by ex vivo magnetic resonance imaging (MRI) at 11.7 T and histology.

Results

MRI at 11.7 T showed that: (i) magnetization transfer contrast (MTC) and diffusion weighted images (DWI) detected thrombus with higher sensitivity compared to T1W and T2W images [sensitivity: MTC = 88.2%, DWI = 76.5%, T1W = 66.6% and T2W = 43.7%, P < 0.001]. Similarly, the contrast-to-noise (CNR) between the thrombus and the underlying plaque was superior on the MTC and DWI images [CNR: MTC = 8.5 ± 1.1, DWI = 6.0 ± 0.8, T1W = 1.8 ± 0.5, T2W = 3.0 ± 1.0, P < 0.001]; (ii) MTC and DWI provided a more accurate detection of thrombus area with histology as the gold-standard [underestimation of 6% (MTC) and 17.6% (DWI) compared to an overestimation of thrombus area of 53.7% and 46.4% on T1W and T2W images, respectively]; (iii) the percent magnetization transfer rate (MTR) correlated with the fibrin (r = 0.73, P = 0.003) and collagen (r = 0.9, P = 0.004) content of the thrombus.

Conclusions

The conspicuity of the thrombus was increased on MTC and DW compared to T1W and T2W images. Changes in the %MTR and apparent diffusion coefficient can be used to identify the organization stage of the thrombus.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号