首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193571篇
  免费   2422篇
  国内免费   37篇
耳鼻咽喉   1284篇
儿科学   7183篇
妇产科学   3586篇
基础医学   18823篇
口腔科学   1868篇
临床医学   15609篇
内科学   34096篇
皮肤病学   949篇
神经病学   18008篇
特种医学   9298篇
外科学   30524篇
综合类   2523篇
一般理论   33篇
预防医学   20442篇
眼科学   2886篇
药学   10607篇
中国医学   637篇
肿瘤学   17674篇
  2023年   69篇
  2022年   133篇
  2021年   316篇
  2020年   201篇
  2019年   372篇
  2018年   22286篇
  2017年   17576篇
  2016年   19760篇
  2015年   1234篇
  2014年   1309篇
  2013年   1595篇
  2012年   8093篇
  2011年   22200篇
  2010年   19417篇
  2009年   12077篇
  2008年   20637篇
  2007年   22869篇
  2006年   1680篇
  2005年   3324篇
  2004年   4483篇
  2003年   5365篇
  2002年   3542篇
  2001年   581篇
  2000年   673篇
  1999年   480篇
  1998年   470篇
  1997年   400篇
  1996年   274篇
  1995年   262篇
  1994年   247篇
  1993年   189篇
  1992年   278篇
  1991年   317篇
  1990年   350篇
  1989年   282篇
  1988年   251篇
  1987年   228篇
  1986年   182篇
  1985年   187篇
  1984年   150篇
  1983年   155篇
  1982年   145篇
  1981年   111篇
  1980年   140篇
  1979年   92篇
  1978年   107篇
  1977年   62篇
  1974年   64篇
  1938年   61篇
  1932年   57篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Magnetic field generated by neuronal activity could alter magnetic resonance imaging (MRI) signals but detection of such signal is under debate. Previous researches proposed that magnitude signal change is below current detectable level, but phase signal change (PSC) may be measurable with current MRI systems. Optimal imaging parameters like echo time, voxel size and external field direction, could increase the probability of detection of this small signal change. We simulate a voxel of cortical column to determine effect of such parameters on PSC signal. We extended a laminar network model for somatosensory cortex to find neuronal current in each segment of pyramidal neurons (PN). 60,000 PNs of simulated network were positioned randomly in a voxel. Biot–savart law applied to calculate neuronal magnetic field and additional phase. The procedure repeated for eleven neuronal arrangements in the voxel. PSC signal variation with the echo time and voxel size was assessed. The simulated results show that PSC signal increases with echo time, especially 100/80 ms after stimulus for gradient echo/spin echo sequence. It can be up to 0.1 mrad for echo time = 175 ms and voxel size = 1.48 × 1.48 × 2.18 mm3. With echo time less than 25 ms after stimulus, it was just acquired effects of physiological noise on PSC signal. The absolute value of the signal increased with decrease of voxel size, but its components had complex variation. External field orthogonal to local surface of cortex maximizes the signal. Expected PSC signal for tactile detection in the somatosensory cortex increase with echo time and have no oscillation.  相似文献   
2.
3.
4.
Background A high Mandard score implies a non-response to chemotherapy in oesophageal adenocarcinoma. However, some patients exhibit tumour volume reduction and a nodal response despite a high score. This study examines survival and recurrence patterns in these patients.Methods Clinicopathological factors were analysed using multivariable Cox regression assessing time to death and recurrence. Computed tomography-estimated tumour volume change was examined in a subgroup of consecutive patients.Results Five hundred and fifty-five patients were included. Median survival was 55 months (Mandard 1–3) and 21 months (Mandard 4 and 5). In the Mandard 4 and 5 group (332 patients), comparison between complete nodal responders and persistent nodal disease showed improved survival (90 vs 18 months), recurrence rates (locoregional 14.75 vs 28.74%, systemic 24.59 vs 48.42%) and circumferential resection margin positivity (22.95 vs 68.11%). Complete nodal response independently predicted improved survival (hazard ratio 0.34 (0.16–0.74). Post-chemotherapy tumour volume reduction was greater in patients with a complete nodal response (−16.3 vs −7.7 cm3, p = 0.033) with no significant difference between Mandard groups.Conclusion Patients with a complete nodal response to chemotherapy have significantly improved outcomes despite a poor Mandard score. High Mandard score does not correspond with a non-response to chemotherapy in all cases and patients with nodal downstaging may still benefit from adjuvant chemotherapy.Subject terms: Oesophageal cancer, Surgical oncology  相似文献   
5.
Farnesyltransferase (FTase) is one of the prenyltransferase family enzymes that catalyse the transfer of 15-membered isoprenoid (farnesyl) moiety to the cysteine of CAAX motif-containing proteins including Rho and Ras family of G proteins. Inhibitors of FTase act as drugs for cancer, malaria, progeria and other diseases. In the present investigation, we have developed two structure-based pharmacophore models from protein–ligand complex (3E33 and 3E37) obtained from the protein data bank. Molecular dynamics (MD) simulations were performed on the complexes, and different conformers of the same complex were generated. These conformers were undergone protein–ligand interaction fingerprint (PLIF) analysis, and the fingerprint bits have been used for structure-based pharmacophore model development. The PLIF results showed that Lys164, Tyr166, TrpB106 and TyrB361 are the major interacting residues in both the complexes. The RMSD and RMSF analyses on the MD-simulated systems showed that the absence of FPP in the complex 3E37 has significant effect in the conformational changes of the ligands. During this conformational change, some interactions between the protein and the ligands are lost, but regained after some simulations (after 2 ns). The structure-based pharmacophore models showed that the hydrophobic and acceptor contours are predominantly present in the models. The pharmacophore models were validated using reference compounds, which significantly identified as HITs with smaller RMSD values. The developed structure-based pharmacophore models are significant, and the methodology used in this study is novel from the existing methods (the original X-ray crystallographic coordination of the ligands is used for the model building). In our study, along with the original coordination of the ligand, different conformers of the same complex (protein–ligand) are used. It concluded that the developed methodology is significant for the virtual screening of novel molecules on different targets.  相似文献   
6.
This paper takes a somewhat slant perspective on flourishing and care in the context of suffering, death and dying, arguing that care in this context consists principally of ‘acts of work and courage that enable flourishing’. Starting with the perception that individuals, society and health care professionals have become dulled to death and the process of dying in Western advanced health systems, it suggests that for flourishing to occur, both of these aspects of life need to be faced more directly. The last days of life need to be ‘undulled’. Reflections upon the experiences of the author as carer and daughter in the face of her mother’s experience of death are used as basis for making suggestions about how care systems and professionals might better assist people in dealing with ‘the most grown up thing’ humans ever do, which is to die.  相似文献   
7.
8.
9.
10.
Advancing nanomedicines from concept to clinic requires integration of new science with traditional pharmaceutical development. The medical and commercial success of nanomedicines is greatly facilitated when those charged with developing nanomedicines are cognizant of the unique opportunities and technical challenges that these products present. These individuals must also be knowledgeable about the processes of clinical and product development, including regulatory considerations, to maximize the odds for successful product registration. This article outlines these topics with a goal to accelerate the combination of academic innovation with collaborative industrial scientists who understand pharmaceutical development and regulatory approval requirements—only together can they realize the full potential of nanomedicines for patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号