首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   6篇
儿科学   2篇
妇产科学   2篇
基础医学   19篇
口腔科学   5篇
临床医学   10篇
内科学   17篇
神经病学   6篇
特种医学   1篇
外科学   1篇
综合类   2篇
预防医学   5篇
眼科学   4篇
药学   10篇
中国医学   1篇
肿瘤学   6篇
  2023年   3篇
  2022年   5篇
  2021年   6篇
  2020年   5篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   6篇
  2013年   10篇
  2012年   6篇
  2011年   6篇
  2010年   3篇
  2009年   4篇
  2008年   6篇
  2007年   5篇
  2006年   4篇
  2005年   4篇
  2002年   1篇
  1993年   1篇
排序方式: 共有91条查询结果,搜索用时 31 毫秒
1.
Herein, we have developed a tool for monitoring the outdoor performance of dye-sensitized solar cells. In this regard, a new dye consisting of an N-aryl-substituted imidazole with N-alkylated carbazole as the donor and cyanoacrylic acid as the acceptor has been designed. The overall power conversion efficiency of the designed dye reached ∼50%, with respect to that of the N719-based device (4%) under similar experimental conditions. Further, the device was interfaced with an IoT system, which measured the voltage and transmitted the device parameters to the user''s mobile phone through a cloud channel. The developed IoT tool provides a resolution of 0.0315 mV and a round-trip delay time of <0.32 s for transmitting the information to the user''s mobile phone.

Herein, we have developed a tool for monitoring the outdoor performance of dye-sensitized solar cells.

Since the discovery of the first web-connected appliance in 1990, the Internet of Things (IoT) has received considerable attention.1 The IoT is a megatrend in technology that covers the entire scientific and engineering disciplines besides internet technology-affiliated communities. The IoT devices are perceived to be power efficient and small in size making them portable, and hence capable of operating in battlefields, agricultural fields, healthcare, transportation, roof top monitoring and even seismic event monitoring.2 The mode of communication can be wired or wireless, based on the need of the user, but mostly it is wireless in nature. The wireless mode creates easy mobility to the users and provides data hand to hand. The IoT devices are equipped with wireless connection facilities such as IEEE 802.11 (Wireless fidelity), IEEE 802.15.4 (Zigbee) and IEEE 802.15 (Bluetooth) protocols. These protocols help in communicating the data to the desired remote location and the data collection in many cases are cloud-interfaced. The development of IoT assures deployment of sensor networks, which obtain real-time data from the sensor nodes across the on-site areas. This design has been successfully demonstrated for water supply and management.3–5 However, numerous challenges with respect to data collection/communication/storage and device power exist, and should be overcome to make this technology suitable for practical applications. Apart from water supply and management, the IoT concept is all set for chemical and bio-sensing applications.6 For instance, Yao and later Liao et al. demonstrated a tear fluid detection with wireless transmission using a contact lens-integrated amperometric glucose biosensor. Very recently, Freitag et al. demonstrated a dye-sensitized photovoltaic device as a power source for the IoT and concluded that this concept is set to define technology for the ensuing decades.7In this context, our main motivation was to monitor the outdoor performance of a dye-sensitized photovoltaic device.8–12 Consequently, we have interfaced the IoT to a dye-sensitized device fabricated using the newly synthesized dye molecule. The dye consists of an N-aryl-substituted imidazole with N-alkylated carbazole as the donor and cyanoacrylic acid as the acceptor/anchoring group (Scheme 1). The characterization results are provided in the ESI (Fig. S1–S5). The photophysical, electrochemical and photovoltaic properties were comprehensively investigated and the obtained results are discussed. Furthermore, the real-time VOC characteristics of the device with respect to the input solar luminance were also monitored through the designed IoT module. The device was connected with a highly resistive A/D converter for recording the VOC characteristics. In addition, the round-trip delay of the near real-time monitoring was also investigated for the firebase cloud interface.Open in a separate windowScheme 1Synthetic pathway of the ICA dye (3).The efficient light harvesting and charge separation in the dye-sensitized semiconductor system depends on the proficient charge transfer from the donor to the acceptor unit of the dye. Hence, UV-visible absorption spectral measurements have been carried out to understand the light harvesting and type of transition type of the ICA dye. The absorption spectrum of the ICA dye was recorded in the THF solvent and is depicted in Fig. 1a. The absorption spectrum of the ICA dye consists of two major absorption peaks (maxima) in the range of 250–500 nm. Typically, the band located between 250 and 350 nm is assigned to the π–π* transition, whereas the band situated in the range of 360–460 nm corresponds to the intramolecular charge transfer (ICT) transition. Among the two types of transitions in the ICA dye, the ICT transition is considered the favourable channel for DSCs. Hence, a detailed investigation on the ICT transition is necessary before employing the ICA dye for TiO2 sensitization and photovoltaic measurements. Initially, the ICT character of the ICA dye was examined through DFT calculations. The time-dependent density functional theory (TDDFT) calculations with different functionals (B3LYP, CAM-B3LYP, M06, Wb97x, M06-2x and PBE0) were employed to find the best fit of experimental absorption with the theoretical data (Table S1). Among the various functionals, B3LYP revealed the best fit to the experimental λmax value; hence, calculations were performed using the B3LYP functional. The computed optimized geometry of the ICA dye is displayed in inset of Fig. 1a. From the figure, it is apparent that the carbazole and cyanoacrylic acid units in the ICA dye are planar, while the imidazole unit is twisted by approximately 147° from the plane. This twisted structure can be clearly visualized from the side view of the optimized geometry (Fig. S6). The twisted structure generally enables the efficient intramolecular charge transfer (ICT) within the dye molecule. Thus, it is believed that the ICA dye has an ICT character during light excitation. This could be easily reorganized through the frontier molecular orbitals (FMOs) of the ICA dye. Fig. 1b and c portray the computed FMOs of the ICA dye and it can be seen that the electron density of the ICA dye in the HOMO is localized mainly on the donor moiety, while the LUMO is populated with the acceptor unit. The FMO picture unambiguously divulges the ICT character of the ICA dye. Further, the molecular electrostatic potential (MESP) map has also been computed to understand the ICT nature of the ICA dye (++). The region around the imidazole unit was found to be nucleophilic with an electrostatic potential of −30.00 kcal mol−1 and the region in the vicinity of C Created by potrace 1.16, written by Peter Selinger 2001-2019 O and C Created by potrace 1.16, written by Peter Selinger 2001-2019 N in cyanoacrylic acid exhibited a potential of −28.35 kcal mol−1 and −39.53 kcal mol−1, respectively. The only electrophilic site in the molecule was around the –OH group of carboxylic acid with an electrostatic energy of +37.65 kcal mol−1. Thus, the MESP map also endorsed the ICT character of the ICA dye.Open in a separate windowFig. 1(a) Absorption spectrum of ICA dye, inset shows the optimized geometry, (b) HOMO, (c) LUMO and (d) MESP of ICA dye.Generally, the energy levels such as HOMO and LUMO of a dye are vital to understand the electron transfer characteristics towards the TiO2 conduction band. Therefore, cyclic voltammetry (CV) and differential pulse voltammetric (DPV) techniques were employed to locate the energy levels by measuring the redox potential of the dye. Fig. S7 shows the CV and DPV voltammograms of the ICA dye in the THF solvent. From the CV plot, it can be observed that there is a sharp signal at the positive potential in the range of +0.5–0.6 V vs. Ag/AgCl and the precise value of oxidation potential is acquired from the DPV plot, which shows the value of +0.62 V vs. Ag/AgCl. This clearly suggests that the ICA dye undergoes a one-electron oxidation process. Notably, even after three cycles of CV, the signal was unaltered, which proves the electrochemical stability of the ICA dye under the applied potential. The energy of HOMO with respect to the oxidation potential of the ICA dye was calculated as −5.63 eV and was found to be lower than that of the redox potential of the iodine/iodide electrolyte (−4.8 eV). This value facilitates the efficient regeneration of the ICA molecule after the injection of its electron to the TiO2 semiconductor. The absorption edge of the ICA dye was used to calculate the onset energy (Eonset) and was found to be 2.72 eV. Both HOMO and Eonset values were used to calculate the energy of LUMO and it was observed that LUMO (−2.91 eV) of the ICA dye was more negative than the conduction band of TiO2 (−4.0 eV). This definitely favours the effective electron injection from the excited ICA dye to the conduction band of TiO2. Thus, ICA dye can be a promising material for the construction of the photoanode in the DSC device.Sensitizing the TiO2 semiconductor with a dye was the key step to develop the photoanode for DSC fabrication. A primary process in the photoanode upon photoexcitation is the electron injection and this process entirely depends on the dye binding as well as light harvesting properties of the material. In order to understand such properties of ICA on the TiO2 surface, ∼4 micron thickness TiO2 films were prepared from a commercially available titania paste (Solaronix SA, Ti-Nanoxide HT/SC series). The films were sensitized in 0.3 mM ICA dye in THF solvent at room temperature for 1 h. The normalized absorption spectrum of ICA-anchored TiO2 thin film is displayed in Fig. 2a. As compared to the solution absorption spectrum, the ICA dye showed broad absorption with a bathochromic shift, which is typically due to the J-type aggregation of the dye.13 This would be beneficial to enhance the light harvesting efficiency of the ICA dye on the TiO2 surface. However, the absorption spectrum of ICA on TiO2 got blue shifted at lower concentration (0.03 mM). The observed blue shift was perhaps due to the H-aggregation or deprotonation of the carboxylic group. To establish whether the blue shift in the absorption spectrum is due to aggregation or deprotonation, we have compared the absorption spectra of 0.03 mM ICA/TiO2 and ICA in triethylamine (TEA). The main intention of introducing TEA to the solution of ICA dye was to deprotonate carboxylic acid,14,15 and as a result, it would weaken the electron-pulling strength of the acceptor moiety (–C Created by potrace 1.16, written by Peter Selinger 2001-2019 N), which in turn may alter the ICT band of the ICA dye. Fig. 2a clearly shows that the absorption maxima of 0.03 mM ICA/TiO2 and ICA/TEA are identical, and this confirms that the blue shift in the absorption spectrum is due to the deprotonation of the carboxylic group and not due to aggregation. Further, the constructed LHE spectra of the ICA-sensitized TiO2 films in two different concentrations are shown in Fig. 2b. The calculated Γ values were 3.45 × 10−8 and 2.49 × 10−8 mol cm−2 for high and low ICA dye concentrations, respectively. Based on the results, high concentration of ICA dye exhibited notable LHE (90%) and Γ values. Thus, a high concentration of ICA dye is recommended for photovoltaic applications.Open in a separate windowFig. 2(a) Normalized absorption spectra of ICA in TEA and titania surface, (b) LHE spectra of ICA-sensitized TiO2 films.The LHE of ICA in the region from 400 nm to 520 nm, indicated that the ICA-sensitized TiO2 device would generate the photocurrent. Hence, the photocurrent density–photovoltage (JV) curve measurement was performed under simulated AM 1.5 solar irradiation (100 mW cm−2) and is shown in Fig. 3. The complete device fabrication details are given in the ESIn. The photovoltaic parameters of the ICA device are summarized in Table S2. The device based on the ICA dye shows an efficiency of 2.04%, with a short-circuit photocurrent density (JSC) of 5.26 mA cm−2, an open-circuit photovoltage (VOC) of 0.58 V, and a fill factor (FF) of 0.66. For a fair comparison, the N719-sensitized DSC was also fabricated under the same conditions and yielded an η value of 4%. Conspicuously, the overall conversion efficiency of the ICA dye reached 51% with respect to the N719 dye. The efficacy of the ICA dye is also compared with previously reported carbazole derivatives16–18 (Table S3). Further, structural optimization such as expanding absorption spectra to include more of the visible region and tuning HOMO/LUMO energy levels are expected to produce more efficient carbazole dyes and this work has commenced in our laboratory.Open in a separate windowFig. 3 JV characteristics of ICA and ICA + CDCA.Further, to improve the performance of the ICA device, chenodeoxycholic acid (CDCA) was considered as a co-adsorbent. Since CDCA can anchor strongly to the TiO2 surface, it would hinder the dye–dye interaction/aggregation.19 Thus, the performance of the ICA device in the presence of CDCA was studied. The results are presented in Table S2, and the corresponding JV curve is shown in Fig. 3. Contrarily, CDCA did not play a vital role in device performance; however, the Jsc of the device decreased. To address the cause of difference in Jsc, we conducted surface coverage measurements of the ICA dye with and without CDCA. The Γ values were calculated to be 3.45 × 10−8 and 2.83 × 10−8 mol cm−2 without and with CDCA, respectively. These values indicate that the amount of ICA dye adsorbed on the TiO2 surface was reduced with the presence of CDCA, resulting in the loss of active light harvesting, in-turn suggesting that CDCA was not suitable for improving the performance. These results hint that the ICA dye did not aggregate on the TiO2 surface.20To further understand the charge transfer properties of the ICA device, a typical electrochemical impedance spectroscopy (EIS) analysis was employed. Fig. 4 shows the EIS Nyquist plot of ICA and ICA + CDCA devices. Nyquist plots have two semicircles. The first semicircle is generally attributed to the charge transfer resistance at the counter electrode/electrolyte interface, while the second semicircle in the middle-frequency range represents the charge-transfer resistance at the TiO2/dye/electrolyte interface.21Open in a separate windowFig. 4(a) Nyquist and (b) Bode plots of ICA and ICA + CDCA devices.It can be seen from Fig. 4a that the radius of the larger semicircle increases a bit in the order of ICA + CDCA > ICA, indicating that the charge recombination resistance increased from ICA to ICA + CDCA. This is to some extent consistent with the order of VOC: ICA + CDCA (0.59 V) > ICA (0.58 V). However, the difference in VOC is not significant. A Bode phase plot is also related to the charge transfer resistance at the TiO2/dye/electrolyte interface. Hence, the EIS Bode plots of the devices were also investigated (Fig. 4b). It is known that the reciprocal of electron lifetime is associated with the charge recombination rate, which in-turn is associated to the lower frequency peak in the Bode plot. Thus, the electron lifetime (τn) can be estimated from τ = 1/(2πf) where τ is the lifetime of electrons in TiO2 and f is the frequency of the peak in the Bode plot. The calculated values were 98.91 and 97.75 ms for ICA and ICA + CDCA, respectively. Thus, EIS results indicate that the introduction of CDCA to ICA dye could not improve the VOC. These results are in good agreement with the photovoltaic results.Further, to understand the outdoor performance of the developed dye-sensitized solar cells (DSSCs), we have employed the IoT technology. As is known, exposing the dye-sensitized photovoltaic device to sun light induces electron flow across the terminals. The terminals were connected in a very high resistance circuit (with voltage comparator or analog to digital circuit). The electron flow from the device pass through a very high resistance digital voltmeter (ADC converter), which has the capability to measure the voltage drop across the terminals at the mV level. The ADS1115 IC was connected with the microcomputer that has cloud connection capability and wireless fidelity modules. The microcomputer (i.e. Raspberry Pi Zero W processor) was programmed to measure the voltage across the terminal every second and update the same in the cloud repository. The cloud repository we have used is firebase. The round-trip delay between sensing and reporting to the android application was observed to be less than 0.33 s. The ADS1115 and the Raspberry Pi W IoT setup was powered with a battery setup to work indigenously throughout the monitoring session. Fig. 5a shows the IoT setup for monitoring the open circuit voltage of the device. The end terminal of the device was connected with the Analog to Digital Converter IC–ADS1115 with a gain factor of 1. The ADS1115 IC used in this setup was a 16 bit A/D converter with a resolution of 0.0315 mV. The ADS1115 IC was connected with the microcomputer (Raspberry Pi device) for the cloud interface through a Wifi support. The Raspberry Pi microcomputer was programmed to send the VOC to the cloud interface and the same was viewed in the android-based application. Fig. S8 illustrates the android application window displaying the live data from the device through cloud interface. The live streaming was done through the node-red programming language. Fig. 5b shows the VOC monitored through the IoT interface from 09:00 to 17:00 h. The VOC was observed to be maximum during peak day time 11.00 am to 02.00 pm.Open in a separate windowFig. 5(a) IoT setup (b) an output plot of VOCvs. time in h. In (a) A, B and C indicate the Analog to Digital Converter IC – ADS1115 16 bit, Raspberry Pi microcomputer and battery power for the microcomputer, respectively.In summary, we have demonstrated the outdoor DSSC performance through the IoT technology. The designed IoT system effectively monitored the device performance through a cloud interface. The performance of the device was notified to the user through a mobile android application within 0.32 s. The round-trip time of the cloud interface shows effective communication establishment. The system provides a near real-time data on the performance of DSSCs.  相似文献   
2.
We are reporting a case of a 37-year-old pregnant woman with a large secundum atrial septal defect with left-to-right shunt and severe pulmonary hypertension. Her atrial septal defect was undiagnosed before this pregnancy. After carefully considering all the options, we repaired her atrial septal defect with an open heart surgical closure at 20 weeks of gestation. A substantial and consistent reduction in pulmonary arterial pressure after the surgery and subsequent uneventful delivery indicate that surgical repair of atrial septal defects is a viable option that should be considered for such patients.  相似文献   
3.
OBJECTIVES: To determine the distribution of acquired AmpC beta-lactamases in 173 isolates of Escherichia coli and Klebsiella spp. submitted to the UK's national reference laboratory for antibiotic resistance. METHODS: MICs were determined and interpreted according to BSAC guidelines. Candidate isolates were those resistant to cefotaxime and/or ceftazidime, irrespective of addition of clavulanic acid. Genes encoding six phylogenetic groups of acquired AmpC enzymes were sought by PCR. Selected isolates were compared by pulsed-field gel electrophoresis (PFGE), and one bla(AmpC) amplicon was sequenced. RESULTS: Genes encoding acquired AmpC enzymes were detected in 67 (49%) candidate E. coli and 21 (55%) Klebsiella spp. Sixty isolates produced CIT-type enzymes, 14 had ACC types, 11 had FOX types and 3 had DHA enzymes. The low-level cephalosporin resistance of the remaining isolates (n = 85; 49%) was inferred to result from reduced permeability or, in E. coli, from hyperexpression of chromosomal ampC. Twenty-four E. coli isolates from one hospital produced a CIT-type enzyme, with 20 of these additionally producing a group 1 CTX-M extended-spectrum beta-lactamase. PFGE indicated that these isolates belonged to UK epidemic strain A, which normally produces CTX-M-15, but no acquired AmpC. Sequencing a representative bla(AmpC) amplicon indicated that in one centre this strain had acquired a novel CMY-2 variant, designated CMY-23. CONCLUSIONS: Diverse acquired AmpC enzymes occur in E. coli and Klebsiella spp. isolates in the UK and Ireland, with CIT types the most common. Producers are geographically scattered, but with some local outbreaks. Acquisition of a CMY-2-like enzyme by E. coli epidemic strain A suggests that these enzymes may be poised to become an important public health issue.  相似文献   
4.
Carbonic anhydrase IX has been used as a hypoxia endogenous marker in a range of solid tumors including renal cell, lung, bladder and tumors of the head and neck. α-CA IX isozyme is over-expressive in hypoxic environment which becomes an attractive target for the design of inhibitors'' targeting cancer particularly, tumor progression and invasion. In the process of designing new leads for the inhibition of tumor-associated hCA IX, the best triazole benzene sulfonamide derivatives were obtained from the QSAR model published in the research paper as cited. The statistically validated QSAR model was utilized for bioactivity prediction of novel leads. Further the designed molecules having good scores were subjected to molecular docking studies and molecular dynamic simulation studies. Designed compounds 1, 2, 20, 24 and 27 have shown predicted bioactivity of 9.13, 9.65, 10.05, 10.03 and 10.104 logarithmic units respectively using QSAR model 2. The low energy conformations of the above compounds exhibited good Autodock binding energy scores (−8.1, −8.2, −8.1, −8.3 and −9.2 K cal mol−1) and interactions with Gln92, Thr200, Asn66 and His68. Desmond''s molecular dynamics simulations studies for 100 ns of compound 27 compared to reference SLC0111 provided useful structural insights of human carbonic anhydrase IX inhibition. Compound 27 with new chemical structure displayed both hydrophobic and hydrophilic stable interactions in the active site. RMSD, RMSF, RoG, H-bond and SASA analysis confirmed the stable binding of compound 27 with 5FL4 structure. In addition, MM-PBSA and MM-GBSA also affirm the docking results. We propose the designed compound 27 (predicted Ki = ∼0.07 nM) as the best theoretical lead which may further be experimentally studied for selective inhibition.

Compound 27 as best theoritical lead interacting with the residues of hCA IX enzyme.  相似文献   
5.
The cytoskeleton of eukaryotic cells is primarily composed of networks of filamentous proteins, F-actin, microtubules, and intermediate filaments. Interactions among the cytoskeletal components are important in determining cell structure and in regulating cell functions. For example, F-actin and microtubules work together to control cell shape and polarity, while the subcellular organization and transport of vimentin intermediate filament (VIF) networks depend on their interactions with microtubules. However, it is generally thought that F-actin and VIFs form two coexisting but separate networks that are independent due to observed differences in their spatial distribution and functions. In this paper, we present a closer investigation of both the structural and functional interplay between the F-actin and VIF cytoskeletal networks. We characterize the structure of VIFs and F-actin networks within the cell cortex using structured illumination microscopy and cryo-electron tomography. We find that VIFs and F-actin form an interpenetrating network (IPN) with interactions at multiple length scales, and VIFs are integral components of F-actin stress fibers. From measurements of recovery of cell contractility after transient stretching, we find that the IPN structure results in enhanced contractile forces and contributes to cell resilience. Studies of reconstituted networks and dynamic measurements in cells suggest direct and specific associations between VIFs and F-actin. From these results, we conclude that VIFs and F-actin work synergistically, both in their structure and in their function. These results profoundly alter our understanding of the contributions of the components of the cytoskeleton, particularly the interactions between intermediate filaments and F-actin.

The cytoskeleton is a highly dynamic structure composed of multiple types of filamentous proteins. In eukaryotic cells, actin, microtubules, and intermediate filaments (IFs) each form intricate networks of entangled and cross-linked filaments. The organization of each individual network is precisely controlled to enable essential cellular functions. However, many core processes also require interactions among the different cytoskeletal components. For example, filamentous-actin (F-actin) and microtubules work together to control cell shape and polarity, which are critical for development, cell migration, and division. Close associations between microtubules and vimentin IFs (VIFs) have also been proposed based on similarities in their spatial distributions and the dependence of the organization of VIF networks on the microtubule-associated motors, kinesin and dynein (13). Indeed, there is some experimental evidence that microtubules can template VIF assembly and that VIFs can guide microtubules (4, 5), while VIFs stabilize microtubules in vitro (6). In addition, in stratified epithelial cells, a subplasmalemmal rim of keratin IFs can be localized just below the actin cortex, suggesting cooperativity of keratin and actin networks in regulating cell mechanics (7). Despite such interactions, VIFs and F-actin are generally thought to form two coexisting but separate networks. For example, fluorescence microscopy typically reveals the strongest signals for F-actin in the cell periphery, whereas the strongest signals for VIFs are near the nucleus in the bulk cytoplasm, suggesting that the two networks have little or no interaction. Furthermore, the functions of F-actin and VIFs appear to be largely contrasting: F-actin generates forces, whereas VIFs provide stability against these forces. Nevertheless, some evidence suggests there may be connections between vimentin and actin: for example, vimentin knockout cells are less motile and less contractile than their wild-type (WT) counterparts (8). Furthermore, some interactions have been observed between F-actin and VIFs (911) as well as the precursors to keratin, another IF system (12). These findings suggest that direct interactions or connections may exist between VIFs and F-actin. However, there have been no reports of direct observations of these interactions through imaging or other means, which would provide conclusive evidence of their significance. Such connections would belie our current understanding of the two independent cytoskeletal networks but could have a profound effect on the mechanical properties of cells. The possibility of such connections demands a closer investigation of both the structural and functional interplay between the F-actin and VIF cytoskeletal networks.Here we present evidence that VIFs and F-actin do work synergistically and form an interpenetrating network (IPN) structure within the cell cortex, defined as the cortical cytoplasm adjacent to the cell surface. We combine high-resolution structured illumination microscopy (SIM) and cryo-electron tomography (cryo-ET) to image mouse embryonic fibroblasts (MEFs) and observe coupling between F-actin and VIF structures within the cortex, contrary to the widely accepted view that they are each spatially segregated. In fact, the association of VIFs with cortical arrays of F-actin stress fibers occurs at multiple length scales. For example, VIFs run through and frequently appear to interconnect with adjacent stress fibers, forming meshworks that surround them. These organizational states are consistent with the formation of an IPN. We show that this IPN structure has important functional consequences in cells and can result in enhanced contractile forces. Moreover, our results indicate that specific associations exist between actin and vimentin proteins in the cytoplasmic environment, which may facilitate the formation of an IPN; the results also show that the VIF network can influence the diffusive behavior of actin monomers, which may, in turn, have downstream effects on other actin-driven processes. Thus, vimentin has a far more comprehensive role in cellular function than previously thought. These findings confirm the importance of the interplay between VIFs and F-actin, especially as it relates to the formation of IPNs and their consequences on the contractile nature of cells.  相似文献   
6.
7.
In the absence of an effective vaccine, there is an urgent need for safe and effective antiviral agents to prevent transmission of HIV. Here, we report that an amphipathic alpha-helical peptide derived from the hepatitis C virus NS5A anchor domain (designated C5A in this article) that has been shown to be virocidal for the hepatitis C virus (HCV) also has potent antiviral activity against HIV. C5A exhibits a broad range of antiviral activity against HIV isolates, and it prevents infection of the three in vivo targets of HIV: CD4(+) T lymphocytes, macrophages, and dendritic cells by disrupting the integrity of the viral membrane and capsid core while preserving the integrity of host membranes. C5A can interrupt an ongoing T cell infection, and it can prevent transmigration of HIV through primary genital epithelial cells, infection of mucosal target cells and transfer from dendritic cells to T cells ex vivo, justifying future experiments to determine whether C5A can prevent HIV transmission in vivo.  相似文献   
8.
The hypoxic microenvironment of solid tumors is associated with malignant progression and it renders tumors more resistant to cancer therapies. Endothelial cell damage may occur following hypoxic conditions and lead to dysfunction; however, endothelial cells in tumors survive hypoxic conditions providing nutrients and oxygen to facilitate tumor growth. In this study, we investigated the effects of tumor-conditioned medium on hypoxia-induced changes in endothelial cell growth, migration and survival. Tumor conditioned medium collected from U87 human glioblastoma cells were applied to endothelial cultures in normoxia or hypoxia conditions. Hypoxia caused a reduction in clonogenic cell survival response and an increase of the sub-G1 phase of the cell cycle in endothelial cells. Cell migration was measured by spheroid and wound-induced migration assays and hypoxia compared with normoxia significantly increased the number of migrating endothelial cells. Nuclear staining with Hoechst 33258 and caspase-9 and -3 activation in endothelial cells show that hypoxia-induced apoptosis involves caspase-dependent mechanism. Exposure to hypoxia caused an increase in gene expression of VEGF and VEGFR2 and activities of MMP-2 and MMP-9. Furthermore, hypoxia induced an increase in capillary-like structure formation in endothelial cells seeded into Matrigel. Tumor conditioned medium enhanced survival and rescued endothelial cells from apoptosis induced by hypoxia. These molecular changes in endothelial cells could, in part, contribute to the angiogenic response that occurs during hypoxia-induced angiogenesis in glial tumors.  相似文献   
9.
10.
The natural level of radioactivity in building materials is one of the major causes of external exposure to γ-rays. The primordial radionuclides in building materials are one of the sources of radiation hazard in dwellings made of these materials. By the determination of the radioactivity level in building materials, the indoor radiological hazard to human health can be assessed. This is an important precautionary measure whenever the dose rate is found to be above the recommended limits. The aim of this work was to measure the specific activity concentration of 226Ra, 232Th and 40K in commonly used building materials from Namakkal, Tamil Nadu, India, using gamma-ray spectrometer. The radiation hazard due to the total natural radioactivity in the studied building materials was estimated by different approaches. The concentrations of the natural radionuclides and the radium equivalent activity in studied samples were compared with the corresponding results of different countries. From the analysis, it is found that these materials may be safely used as construction materials and do not pose significant radiation hazards.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号