首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14961篇
  免费   1567篇
  国内免费   704篇
耳鼻咽喉   164篇
儿科学   693篇
妇产科学   189篇
基础医学   4383篇
口腔科学   168篇
临床医学   1169篇
内科学   2787篇
皮肤病学   478篇
神经病学   979篇
特种医学   195篇
外国民族医学   6篇
外科学   584篇
综合类   1695篇
现状与发展   6篇
预防医学   419篇
眼科学   394篇
药学   588篇
  1篇
中国医学   50篇
肿瘤学   2284篇
  2024年   35篇
  2023年   210篇
  2022年   447篇
  2021年   630篇
  2020年   602篇
  2019年   610篇
  2018年   503篇
  2017年   570篇
  2016年   611篇
  2015年   668篇
  2014年   879篇
  2013年   1023篇
  2012年   789篇
  2011年   814篇
  2010年   683篇
  2009年   719篇
  2008年   770篇
  2007年   724篇
  2006年   741篇
  2005年   672篇
  2004年   623篇
  2003年   567篇
  2002年   489篇
  2001年   475篇
  2000年   341篇
  1999年   383篇
  1998年   368篇
  1997年   294篇
  1996年   220篇
  1995年   194篇
  1994年   139篇
  1993年   97篇
  1992年   61篇
  1991年   67篇
  1990年   38篇
  1989年   29篇
  1988年   24篇
  1987年   15篇
  1986年   10篇
  1985年   19篇
  1984年   12篇
  1983年   8篇
  1982年   14篇
  1981年   12篇
  1980年   11篇
  1979年   6篇
  1978年   3篇
  1977年   5篇
  1976年   3篇
  1970年   5篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
141.
Fanconi-Bickel syndrome (FBS), or glycogen storage disease type XI, is a rare autosomal recessive disorder characterized by hepatorenal glycogen accumulation, Fanconi nephropathy, and impaired utilization of glucose and galactose. Recently, this disease was elucidated to link mutations in the glucose transporter 2 (GLUT2) gene. Only three mutations in three FBS families have been reported. Therefore, it is important to elucidate mutations in the GLUT2 gene in FBS by answering the question of whether the syndrome is a single gene disease. In this report, we describe two patients in two unrelated families clinically diagnosed with FBS. No mutation in the entire protein coding region of the GLUT2 gene was detected in patient 1, which suggested that no mutation existed in the GLUT 2 gene, or that some mutations had affected the expression of the GLUT 2 gene. In patient 2, a novel homozygous nonsense mutation (W420X, Trp at codon 420 to stop codon) was detected. These results support the correlation between GLTU2 gene mutation and FBS syndrome. However, many patients must be analyzed to determine whether other genes are involved in FBS. Received: July 16, 1999 / Accepted: September 3, 1999  相似文献   
142.
Summary The three mutator strains ana r-8, ana r-14, and diu r-301 were shown to produce respiratory deficient mutants at different rates. The frequency of respiratory deficient mutants in a culture could be increased by adding ethidium bromide. According to their cytochrome spectra and enzymatic activities they form three classes, namely mutants defective in cytochrome oxidase, in cytochrome b, and in both cytochromes. By restriction enzyme analysis of mitochondrial DNA from about 100 mutants, 22 deletion mutants were identified. The deletions, ranging from 50 to 1,500 base pairs were physically mapped. Deletions were localized in the genes coding for subunit 1 of cytochrome oxidase with its two introns, within the cytochrome b gene and its intron, and within the genes for subunits 2 and 3 of cytochrome oxidase. In several cases, where the physical mapping yielded ambiguous results, pairwise genetic crosses ruled out an overlap between two neighbouring deletions.Using these mitochondrial deletion mutants as tester strains, it was shown that only tetrad analysis and chemical haploidization, but not mitotic segregation analysis, allows a decision between chromosomal and mitochondrial inheritance of respiratory deficiency in Schizosaccharomyces pombe. Abbreviations. MtDNA = mitochondrial DNA; S. pombe = Schizosaccharomyces pombe; cox1, cox2, and cox3 refer to the mt genes coding for the three subunits of cytochrome oxidase; ATPase 6 (oli2), ATPase 8 (aapl in Saccharomyces cerevisiae, urf a61 in HeLa) and ATPase 9 (olil) refer to the three respective subunits of ATP synthase; cob is thegene for apocytochrome b; urf a is the single intergenic unassigned reading frame in S. pombe; 1 rRNA and s rRNA refer to the large and small ribosomal RNA, respectively. Mut is a cytoplasmic mutator (the corresponding wild type allele is mut+). Mit are mitochondrially inherited respiratory deficient mutants with mitochondrial protein synthesis; RC = respiratory competent, RD = respiratory deficient.  相似文献   
143.
Hereditary hemochromatosis has been recognized as a clinical disorder for more than 100 years. The common form of the disorder is caused by the Cys282Tyr mutation (C282Y) of the HFE gene. Hereditary hemochromatosis affects predominantly people of Northern European origin. The C282Y mutation probably occurred on a single chromosome carrying the ancestral hemochromatosis haplotype, which subsequently was spread by emigration and the founder effect. It has been estimated that the C282Y mutation appeared 60-70 generations ago. It was initially suggested that the ancestral C282Y mutation occurred within the Celtic group of peoples. However, we hypothesize that the distribution of the C282Y mutation in Europe is more consistent with an origin among the Germanic Iron Age population in Southern Scandinavia. From this area, the mutation could later be spread by the migratory activities of the Vikings. The aim of the present study was to evaluate the validity of these two hypotheses. Several arguments are in favor of the 'Viking hypothesis': first, the highest frequencies (5.1-9.7%) of the C282Y mutation are observed in populations in the Northern part of Europe, i.e. Denmark, Norway, Sweden, Faeroe Islands, Iceland, Eastern part of England (Danelaw) and the Dublin area, all Viking homelands and settlements. Second, the highest allele frequencies are reported among populations living along the coastlines. Third, the frequencies of the C282Y mutation decline from Northern to Southern Europe. Intermediate allele frequencies (3.1-4.8%) are seen in the populations in Central Europe, which is the original Celtic homeland. Low allele frequencies (0-3.1%) are recognized in populations in Southern Europe and the Mediterranean.  相似文献   
144.
Matsubara Y  Kure S 《Human mutation》2003,22(2):166-172
Recent advances in human genome research have revealed that genetic polymorphisms, such as single nucleotide polymorphisms (SNPs), are closely associated with susceptibility to various common diseases and adverse drug reactions. Also, numerous mutations responsible for a number of genetic diseases have been identified. Clinical application of genetic information to individual health care requires simple and rapid identification of nucleotide changes in clinical settings. We have devised a novel low-tech method for the detection of a single nucleotide substitution using competitive allele-specific short oligonucleotide hybridization with immunochromatographic strip. The gene of interest is PCR-amplified, hybridized to an allele-specific short oligonucleotide probe in the presence of a competitive oligonucleotide, and subjected to chromatography using a DNA test strip at room temperature. The genotype is unambiguously determined by the presence or the absence of visible purple lines on a strip. Feasibility of the method was demonstrated by the detection of a prevalent disease-causing mutations in glycogen storage disease type Ia (G6PC), medium-chain acyl-CoA dehydrogenase deficiency (ACADM), non-ketotic hyperglycinemia (GLDC), and clinically important polymorphisms in the CYP2C19 gene and the aldehyde dehydrogenase 2 gene (ALDH2). The procedure does not demand either technical expertise or expensive instruments and is readily performed in local clinical laboratories. The result is obtained within 10 min after PCR. This rapid and simple method of SNP detection may be used for point-of-care genetic diagnosis with potentially diverse clinical applications. Hum Mutat 22:166-172, 2003.  相似文献   
145.
 Hereditary spastic paraplegia (HSP) is a group of clinically and genetically heterogeneous neurodegenerative disorders characterized by slowly progressive spasticity and weakness of the lower extremities. Among eight loci linked with autosomal-dominant (AD)-HSP, the SPG4 locus on chromosome 2p22 accounts for about 40% of all patients. Recently, mutations in a new member of the AAA protein family, called spastin, have been identified as responsible for SPG4-linked AD-HSP. Here, we describe a novel missense mutation (c.1031T>A; I344K) in exon 7 of the SPG4 gene identified in a Korean family with typical clinical features of pure AD-HSP. The mutation affects the third amino acid of the highly conserved AAA cassette domain, which is the most fore part of the domain altered by a missense mutation reported so far. Clinical presentations of affected individuals carrying the I344K mutation were not different from those of pure AD-HSP with SPG4 mutations reported previously. However, it is noteworthy that neither urinary dysfunction nor involvement of upper extremities was noticed in this family. To our knowledge, this is the first report of genetically confirmed AD-HSP in Korea. Received: February 20, 2002 / Accepted: May 21, 2002  相似文献   
146.
Hereditary pancreatitis (HP) is a rare inherited disorder, characterised by recurrent episodes of pancreatitis often beginning in early childhood. The mode of inheritance suggests an autosomal dominant trait with incomplete penetrance. The gene, or at least one of the genes, responsible for hereditary pancreatitis has been mapped to the long arm of chromosome 7 and a missense mutation, an arginine to histidine substitution at residue 117 in the trypsinogen cationic gene (try4) has been shown to segregate with the HP phenotype. The aim of this work was to investigate the molecular basis of hereditary pancreatitis. This study was performed on 14 HP families. The five exons of the trypsinogen cationic gene were studied using a specific gene amplification assay combined with denaturing gradient gel electrophoresis (DGGE). The present paper describes three novel mutations, namely K23R and N29I and a deletion -28delTCC in the promoter region. We also found a polymorphism in exon 4, D162D. In eight of these families we found a mutation which segregates with the disease. A segregation analysis using microsatellite markers carried out on the other families suggests genetic heterogeneity in at least one of them. Our findings confirm the implication of the cationic trypsinogen gene in HP and highlight allelic diversity associated with this phenotype. We also show that the pattern of inheritance of HP is probably complex and that other genes may be involved in this genetic disease.  相似文献   
147.
目的 构建HPV 18 L1-E6,L1-E7嵌合基因的表达载体,并在CHO细胞中表达。方法 克隆HPV18 L1-E6和L1-E7基因,插入中介载体pGEMT-Easy中并测序鉴定。采用PCR定点突变法,突变L1-E6,L1-E7基因序列中与转化作用相关的位点,分别与L1基因连接后插入真核表达载体pVAX1,构建真核表达质粒pVAX-1L1 E6Mxx,L1E7Mxx。用磷酸钙沉淀法,转染CHO细胞,以抗HPV-18L1,抗E6和抗E7特异性单克隆抗体(mAb)做ELISA和免疫细胞化学法检测。结果 ELISA检测显示,转染各种pVAX1-LIE6Mxx-L1E7Mxx融合蛋白表达质粒的细胞提取物的P-N值均>2.1;免疫细胞化学检测,在胞浆,胞核可见棕黄色颗粒。结论 我建的pVAX1-L1E6Mxx-E7Mxx融合蛋白质表达质粒,可在转当细胞内表达相应的L1-E6Mxx和L1-E7Mxx蛋白,为今后进行DNA疫苗的研究奠定了基础。  相似文献   
148.
Pulmonary lymphangioleiomyomatosis (LAM) is a destructive lung disease characterized by a diffuse hamartomatous proliferation of smooth muscle cells (LAM cells) in the lungs. Pulmonary LAM can occur as an isolated form (sporadic LAM) or in association with tuberous sclerosis complex (TSC) (TSC-LAM), a genetic disorder with autosomal dominant inheritance with various expressivity resulting from mutations of either the TSC1 or TSC2 gene. We examined mutations of both TSC genes in 6 Japanese patients with TSC-LAM and 22 patients with sporadic LAM and identified six unique and novel mutations. TSC2 germline mutations were detected in 2 (33.3%) of 6 patients with TSC-LAM and TSC1 germline mutation in 1 (4.5%) of 22 sporadic LAM patients. In accordance with the tumor-suppressor model, loss of heterozygosity (LOH) was detected in LAM cells from 3 of 4 patients with TSC-LAM and from 4 of 8 patients with sporadic LAM. Furthermore, an identical LOH or two identical somatic mutations were demonstrated in LAM cells microdissected from several tissues, suggesting LAM cells can spread from one lesion to another. Our results from Japanese patients with LAM confirmed the current concept of pathogenesis of LAM: TSC-LAM has a germline mutation but sporadic LAM does not; sporadic LAM is a TSC2 disease with two somatic mutations; and a variety of TSC mutations causes LAM. However, our study indicates that a fraction of sporadic LAM can be a TSC1 disease; therefore, both TSC genes should be examined, even for patients with sporadic LAM. Received: August 30, 2001 / Accepted: November 2, 2001  相似文献   
149.
Purine nucleoside phosphorylase (PNP) deficiency results in an autosomal recessive immunodeficiency disease characterized by initial involvement of cellular immunity and neurological manifestations with subsequent abnormalities of humoral immunity. The initial presentation and clinical course has varied widely in the relatively few published cases. The molecular basis has been reported in only 10 patients, precluding evaluation of phenotype-genotype relationships. We now report clinical, immunologic, and molecular findings in a new case of relatively early onset that emphasizes hypotonia and developmental delay as early manifestations. The patient carried two novel missense mutations (Gly56A1a and Val217Ile) on the same allele in apparent homozygosity. Expression of each of the mutant enzymes in vitro demonstrated that the Gly156A1a mutation abolished enzyme activity while the Val217Ile mutation was without obvious effect and is therefore a normal variant. Such "normal" polymorphisms might be associated with a variable response to the immunosuppressive PNP inhibitors currently in clinical trials.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号