首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1010篇
  免费   89篇
  国内免费   55篇
耳鼻咽喉   4篇
儿科学   6篇
妇产科学   22篇
基础医学   169篇
口腔科学   4篇
临床医学   53篇
内科学   90篇
皮肤病学   7篇
神经病学   26篇
特种医学   12篇
外科学   64篇
综合类   156篇
预防医学   15篇
眼科学   4篇
药学   137篇
中国医学   10篇
肿瘤学   375篇
  2024年   1篇
  2023年   6篇
  2022年   7篇
  2021年   14篇
  2020年   5篇
  2019年   12篇
  2018年   16篇
  2017年   15篇
  2016年   24篇
  2015年   34篇
  2014年   57篇
  2013年   85篇
  2012年   61篇
  2011年   103篇
  2010年   95篇
  2009年   93篇
  2008年   96篇
  2007年   84篇
  2006年   94篇
  2005年   84篇
  2004年   46篇
  2003年   63篇
  2002年   25篇
  2001年   17篇
  2000年   9篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
排序方式: 共有1154条查询结果,搜索用时 0 毫秒
101.
目的探讨肿瘤坏死因子相关诱导凋亡配体 (TRAIL)对人宫颈癌Hela细胞的作用 ,以及与化疗药物的协同作用。方法将Hela细胞接种至 96孔培养板后分别加入浓度为l.0、10 .0、10 0 .0 μl/L的TRAIL、0 .1、1.0、10 .0mg/L的阿霉素 (ADM )和丝裂霉素 (MMC) ,及不同匹配的TRAIL MMC和TRAIL ADM ,采用四甲基偶氮唑盐 (MTT)比色法分别检测肿瘤细胞的生存率 ;将Hela细胞接种至 12孔板 ,培育 2 4h后加入不同浓度的TRAIL、ADM、MMC、TRAIL ADM、TRAL MMC ,用流式细胞术检测不同处理组肿瘤细胞的凋亡率和死亡率。结果 10 0 μg/LTRAIL引起细胞的凋亡率为 2 0 .1% ,与无药物组 1.1%的凋亡率有非常显著性差异 (P <0 .0 1) ;单独采用 10mg/LMMC、ADM对细胞的抑制率为 3 6.0 %和 44 .1% ,而 10 0 μg/LTRAIL与 10mg/LMMC、ADM联合后对细胞的抑制率分别达到 5 8.4%和 73 .7% ,两者有协同作用 (P <0 .0 5 )。结论在体外实验中 ,TRAIL可通过诱导宫颈癌Hela细胞的凋亡而产生抗肿瘤作用 ;TRAIL与化疗药物ADM、MMC有协同抗肿瘤作用。  相似文献   
102.
This review discusses the current understanding of biomarkers of immune quiescence based on reviews of published literature in kidney transplant operational tolerance and mechanistic studies based on a better characterization of the stable, well-functioning renal allograft.  相似文献   
103.
FTY720, Fingolimod, is a functional antagonist to the sphingosine-1-phoaphate (S1P) receptor and an inhibitor of sphingosine kinase 1. Here, we showed that a combination of FTY720 and TRAIL induced apoptosis in human renal, breast, and colon carcinoma cells. Most importantly, this combination had no effect on normal cells. Furthermore, the combined treatment with FTY720 and TRAIL reduced tumor growth in xenograft models. FTY720 up-regulated death receptor (DR)5 at post-translational level. Knockdown of DR5 markedly blocked apoptosis induced by the combined treatment. FTY720 also inhibited Mcl-1 expression at the post-translational level. Over-expression of Mcl-1 blocked apoptosis induced by FTY720 and TRAIL. Interestingly, phospho-FTY720 and inhibitors of sphingosine kinase failed to enhance TRAIL-induced apoptosis. Thus, FTY720 enables TRAIL-induced apoptosis through up-regulation of DR5 and down-regulation of Mcl-1 in human cancer cells.  相似文献   
104.
TRAIL can induce apoptosis in some cancer cells and is an immune effector in the surveillance and elimination of developing tumors. Yes, some cancers are resistant to TRAIL. Delphinidin, a polyphenolic compound contained in brightly colored fruits and vegetables, has anti-inflammatory, anti-oxidant, and anti-tumorigenic activities. Here we showed that delphinidin sensitized TRAIL-resistant human prostate cancer cells to undergo apoptosis. Cells treated with delphinidin and TRAIL activated the extrinsic and intrinsic pathways of caspase activation. TRAIL-induced apoptosis in prostate cancer cells pretreated with delphinidin was dependent on death receptor 5 (DR5) and downstream cleavage of histone deacetylase 3 (HDAC3). In conclusion, delphinidin sensitizes prostate cancer cells to TRAIL-induced apoptosis by inducing DR5, thus causing caspase-mediated HDAC3 cleavage. Our data reveal a potential way of chemoprevention of prostate cancer by enabling TRAIL-mediated apoptosis.  相似文献   
105.
106.
Chemotherapeutic agents have been used for the treatment of patients with osteosarcoma (OS). However, inherent or acquired resistance to these agents is a serious problem in the management of OS patients. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered to induce apoptosis in a variety of cancer cells but not normal cells. In the present study, we examined whether chemotherapeutic agents enhance TRAIL-induced apoptosis in the sarcoma cell lines MG-63 and SaOS-2. Pretreatment with sub-toxic or slightly toxic concentrations of chemotherapeutic agents (cis-diammine dichloroplatinum, CDDP and doxorubicin, DXR) sensitized both cell lines to TRAIL-induced apoptosis, as assessed by the propidium iodide or Annexin V-Cy5 staining method. These cell lines expressed death receptors TRAIL-receptor 1 (TRAIL-R1) and TRAIL-R2, which were unaltered by treatment with CDDP, as assessed by flow cytometry. The decoy receptors TRAIL-R3 and -R4 were barely detected in both cell lines. CDDP down-regulated c-FLIP, tending to lower the activation threshold required for TRAIL-induced caspase-8 activation. The CDDP-pretreated cells indeed demonstrated more increased TRAIL-mediated caspase-8 activation, loss of mitochondrial membrane potential (DeltaPsi(m)), and apoptosis than untreated cells. Consequently, the activated caspase-8 might lead to either activation of effector caspases such as caspase-3 or loss in DeltaPsi(m). Both the increased caspase activation and mitochondrial dysfunction induced by combination of CDDP and TRAIL would contribute to enhanced apoptotic cell death. The results of the present study would be valuable for the design of novel treatment modalities for patients with OS.  相似文献   
107.
108.
109.
In a previous paper we described the properties of a rapidly metastasizing cell line CC531s-m2 derived from the poorly metastasizing CC531s cell. The m2-cell line was relatively resistant to killing by NK cells. Both CD95L and TRAIL mediated apoptosis was decreased in the m2-cell line. Now, by flow cytometrical analysis of intra- and extra-cellular expressed receptors, we show that the localization of the receptors for CD95L and TRAIL was not altered in the CC531s-m2 cells as compared to the parental cell line. Subsequently caspase-activation and mitochondrial function were studied by enzymatic cleavage of fluorescent caspase-substrates and retention of the mitochondrial dye rhodamine-123, respectively. The activation of caspases as well as the loss of the mitochondrial membrane potential (MMP) was less in the CC531s-m2 cell line upon CD95L- and TRAIL-signalling. Furthermore, the sensitivity of the CC531-m2 towards cisplatin-induced apoptosis was strongly decreased. This was consistent with less mitochondrial damage, delayed caspase cleavage and decreased caspase activity. Altogether, we conclude that an Natural Killer-cell insensitive cell is less sensitive to CD95L- and TRAIL-induced apoptosis as well as anti-cancer drug induced apoptosis by prevention of mitochondrial damage and activation of caspases.  相似文献   
110.
BACKGROUND: A critical factor in prostate cancer development and progression is the altered expression of apoptotic regulatory proteins which renders cells resistant to both hormone- and chemo-therapies. Resveratrol, a dietary component with chemopreventive properties has been reported to resensitize a variety of cancer cell types to apoptosis. In the current study, the ability of resveratrol pre-treatment to sensitize hormone refractory prostate cancer cell lines (PC-3 and DU145) to apoptosis and the mechanisms involved were investigated. METHODS: Apoptosis was assessed using several established parameters and protein expression was analyzed by Western blot and flow cytometry. IAP knockdown was achieved using RNAi while inhibition of Akt phosphorylation was achieved by pre-incubation with the PI3-kinase inhibitor LY294002. RESULTS: Pre-treatment with resveratrol sensitized PC-3 and DU145 cells to agents that specifically target death receptors (TRAIL, Fas, TNFalpha) but not agents that initiate apoptosis through other mechanisms (Etoposide, Paclitaxel, Tunicamycin, Thapsigargin). Resveratrol pre-treatment altered the expression of IAPs and Bax, and decreased Akt phosphorylation in PC-3 cells, leading to increased caspase activation and apoptosis. While knockdown of IAPs using siRNA did not mimic the effects of resveratrol, inhibition of Akt phosphorylation using LY294002 sensitized PC-3 cells to TRAIL induced apoptosis but not to etoposide or tunicamycin. CONCLUSION: Altering apoptotic susceptibility in advanced androgen independent disease requires manipulation of a broad signaling pathway. Use of resveratrol or inhibition of Akt phosphorylation may represent an important therapeutic approach in combination with conventional therapies for the treatment of prostate cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号