首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   20篇
  国内免费   1篇
儿科学   5篇
妇产科学   1篇
基础医学   21篇
临床医学   5篇
内科学   7篇
皮肤病学   13篇
外科学   4篇
综合类   1篇
预防医学   1篇
药学   4篇
中国医学   1篇
肿瘤学   55篇
  2023年   5篇
  2022年   6篇
  2021年   8篇
  2020年   8篇
  2019年   5篇
  2018年   10篇
  2017年   3篇
  2016年   15篇
  2015年   13篇
  2014年   14篇
  2013年   10篇
  2012年   8篇
  2011年   3篇
  2007年   2篇
  2004年   3篇
  2003年   3篇
  2001年   1篇
  1996年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
101.
Introduction: Activating NRAS mutations occur in approximately 15–20% of melanomas and are the second most common oncogenic driver mutation in this disease, after BRAF mutations. There is an unmet medical need for new targeted therapy opportunities in metastatic patients whose tumors harbor an NRAS mutation. Binimetinib, a mitogen-activated protein kinase kinase (MEK) inhibitor, has shown clinical activity in this group of patients.

Areas covered: The purpose of this paper was to review the safety, activity and efficacy of the MEK inhibitor binimetinib for the treatment of NRAS-mutant melanoma, as well as to discuss future therapeutic perspectives such as multiple pathways, targeted therapy, and combinations with immunotherapy.

Expert commentary: Only a modest progression-free survival (PFS) benefit was observed in NRAS-mutated patients who received binimetinib compared with dacarbazine in a randomized phase 3 clinical trial, with no improvement in overall survival. Nevertheless, binimetinib represents another promising treatment option for advanced melanoma and the first molecularly targeted therapy for the NRAS-mutant population. Binimetinib may also have a role in treating NRAS-mutated melanoma patients after failure of immunotherapy.  相似文献   

102.
Cutaneous melanomas can be divided into three mutually exclusive genetic subsets: tumors with mutated BRAF, tumors with mutated NRAS and tumors wild type at both loci (wt/wt). Targeted therapy for melanoma has been advancing with agents directed to mutated BRAF, accounting for 50% of melanoma patients. The c-Met pathway is known to play a role in melanoma tumorigenesis and preliminary data from our laboratory suggested that this pathway is preferentially activated in NRAS-mutated tumors. The objective of this study was to test the hypothesis that melanomas carrying the mutated NRAS genotype are uniquely sensitively to c-Met inhibition, thus providing rationale for therapeutic targeting of c-Met in this patient cohort. Using primary human melanomas with known BRAF/NRAS genotypes, we observed greater immunostaining for phosphorylated (activated) c-Met in NRAS-mutated and wt/wt tumors, compared to BRAF-mutated tumors. NRAS-mutated and wt/wt cell lines also demonstrated more robust c-Met activation in response to hepatocyte growth factor (HGF). Knock-down of mutated N-Ras, but not wild type N-Ras, by RNA interference resulted in decreased c-Met phosphorylation. Compared to BRAF mutants, NRAS-mutated melanoma cells were more sensitive to pharmacologic c-Met inhibition in terms of c-Met activation, Akt phosphorylation, tumor cell proliferation, migration and apoptosis. This enhanced sensitivity was observed in wt/wt cells as well, but was a less consistent finding. On the basis of these experimental results, we propose that c-Met inhibition may be a useful therapeutic strategy for melanomas with NRAS mutations, as well as some tumors with a wt/wt genotype.  相似文献   
103.
R Singhal  ES Kandel 《Oncotarget》2012,3(7):700-708
While new drugs aimed at BRAF-mutated cancers are entering clinical practice, cells and tumors with activating Ras mutations are relatively resistant to those and quite a few other anti-cancer agents. This inspires the effort to reverse this resistance or to uncover new vulnerabilities in such resistant cancers. IPA3 has been originally identified as a small molecule inhibitor of p21-activated protein kinase 1 (PAK1), a candidate therapeutic target in human malignancies. We have tested a battery of melanoma and colon carcinoma cell lines that carry mutations in BRAF, NRAS and KRAS genes and have observed that those with NRAS and KRAS mutations are more sensitive to killing by IPA3. Genetic manipulations suggest that the differential response depends not just on these oncogenes, but also on additional events that were co-selected during tumor evolution. Furthermore, sublethal doses of IPA3 or ectopic expression of dominant-negative PAK1 sensitized Ras-mutated cells to GDC-0897 and AZD6244, which otherwise have reduced efficiency against cells with activated Ras. Dominant-negative PAK1 also reduced the growth of NRAS-mutated cells in confluent cultures, but, unlike IPA3, caused no significant toxicity. Although it remains to be proven that all the effects of IPA3 are exclusively due to inhibition of PAK1, our findings point to the existence of selective vulnerabilities, which are associated with Ras mutations and could be useful for better understanding and treatment of a large subset of tumors.  相似文献   
104.
105.
目的:探讨265例结直肠癌患者BRAF,KRAS,NRAS和PIK3 CA基因突变及其病理特征关系.方法:选取2014年12月至2016年12月的265例结直肠癌患者肿瘤组织标本进行回顾性分析,采用PCR扩增-直接测序法检测BRAF基因(1 5外显子600密码子),KRAS基因(12,13,61密码子突变),NRAS(2号与3号外显子的12密码子、13密码子与61密码子常见的12个突变位点)及PIK3 CA(第9,20外显子)基因的突变状态,分析其与结直肠癌临床病理特征的关系.结果:265例患者中存在BRAF基因突变率为6.8%(18/265),KRAS基因突变率为32.1%(85/265),NRAS基因突变率为5.7%(15/265),PIK3 CA基因突变率为11.3%(30/265).NRAS基因和KRAS基因突变与年龄有关(P<0.05),与性别、原发部位、组织学类型、分化程度、TNM分期、区域淋巴结转移、远处转移、术后复发转移均无关(P>0.05);BRAF,PIK3 CA基因在原发部位为右半结肠患者中的突变率明显升高(P<0.05),但与年龄、性别、组织学类型、分化程度、TNM分期、区域淋巴结转移、远处转移、术后复发转移均无关(P>0.05).结论:NRAS,PIK3 CA基因在中国结直肠癌患者中的突变率较低.KRAS,NRAS基因突变与年龄相关,BRAF,PIK3 CA基因与肿瘤原发部位相关,联合检测这些基因的突变情况可以判断疾病的发生发展.  相似文献   
106.
Current clinical guidelines recommend mutation analysis for select codons in KRAS and NRAS exons 2, 3, and 4 and BRAF V600E to guide therapy selection and prognostic stratification in advanced colorectal cancer. This study evaluates the impact of extended molecular testing on the detection of RAS‐MAPK pathway mutations. Panel next‐generation sequencing results of colorectal cancer specimens from 5795 individuals from the American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange (AACR Project GENIE) were included. Mutations in RAS‐MAPK pathway genes were analyzed and functionally annotated. Colorectal cancers had recurrent pathogenic pathway activating mutations in KRAS (44%), NRAS (4%), HRAS (<1%), BRAF (10%), MAP2K1 (1%), RAF1 (<1%), and PTPN11 (<1%). The proportion of colorectal cancers with pathogenic RAS pathway mutations was 37% when only KRAS codon 12 and 13 mutations were considered, 46% when also including select KRAS and NRAS exons 2, 3, and 4 mutations, 53% when including BRAF V600E mutations, and 56% when including all pathogenic mutations. Panel next‐generation sequencing testing identifies additional RAS‐MAPK pathway driver mutations beyond current guideline recommendations. These mutations have potential implications in treatment selection for patients with advanced colorectal cancer.  相似文献   
107.
Introduction: Melanoma is an aggressive cutaneous malignancy associated with poor response to traditional therapies. Recent regulatory approval for immune checkpoint inhibitors and agents targeting mutated BRAF has led to a tremendous expansion of effective treatment options for patients with advanced melanoma. Unfortunately, primary or acquired resistance develops in most patients, highlighting the need for additional therapies. Numerous genetic and other molecular features of this disease may provide effective targets for therapy development.

Areas covered: This article reviews available melanoma treatments, including immune and molecularly-targeted therapies. We then discuss agents in development, with a focus on targeted (rather than immune) therapies. In particular, we discuss agents that block mitogen-activated protein kinase (MAPK) signaling, as well as other emerging approaches such as antibody-drug conjugates, cell-cycle targeting, and novel genetically-informed clinical trials.

Expert opinion: Despite the incredible advances in melanoma therapeutics over the last several years, a clear need to develop more effective therapies remains. Molecularly-targeted therapy approaches will likely remain a cornerstone of melanoma treatment in parallel to immune therapy strategies.  相似文献   
108.
ABSTRACT

Introduction

Approximately 50% of patients with metastatic melanoma have mutations in BRAF. Based on the results of prior phase III trials, the combination of a BRAF inhibitor (BRAFi) and a MEK inhibitor (MEKi) is the standard of care in patients with BRAF-mutant metastatic melanoma.  相似文献   
109.
Background: Mutations in RAS (KRAS, NRAS) and BRAF genes are the main biomarker predicting response to anti-EGFR monoclonal antibodies in targeted therapy in colorectal cancer (CRC). Objective: Our study aims to evaluate the frequencies of KRAS, NRAS and BRAF mutations and their possible associations with clinico-pathological features in CRC patients from Morocco. Methods: DNA was extracted from 80 FFPE samples using the QIAamp DNA FFPE-kit. RAS and BRAF mutations were assessed by pyrosequencing assays using Qiagen, KRAS Pyro®kit 24.V1, Ras-Extension Pyro®kit 24.V1 and BRAF Pyro®Kit 24.V1, respectively, and carried out in the PyroMark-Q24. Results: RAS mutations were identified in 57.5% (56.2% in KRAS, 8.8% in NRAS). In KRAS gene, exon 2 mutations accounted for 93.3% (68.9% in codon 12, 24.4% in codon 13). Within codon 12, G12D was the most prevalent mutation (37.7%), followed by G12C (13.4%), G12S (8.9%) and G12V (6.6%). Within codon 13, the most frequently observed mutation was G13D (22.3%). The mutation rates of exon 3 and 4 were 15.6% and 13.3%, respectively. In exon 3 codon 61, 2.3% patients were detected with two concurrent mutations (Q61R, Q61H), and 4.4% with three concurrent mutations (Q61R, Q61H, Q61L). In NRAS gene, the mutation rates of exon 2, 3 and 4 were 57.1%, 28.6%, and 14.3%, respectively. G13A and Q61H were the most common mutations, accounting for 42.9% and 28.5%, respectively. There were 13% patients with concurrent KRAS/NRAS mutation and 4.3% wt KRAS with NRAS mutations. No mutations were identified in BRAF gene. In both sexes, KRAS codon 12 mutations were associated with higher stage III/IV tumors. Moreover, Patients whose tumor is in the proximal colon (56.3%) are more likely to harbor KRAS mutations than those tumor located in rectum (25%). Conclusion: RAS mutations could be useful in future target anti-EGFR therapy and molecular CRC screening strategy in Morocco.  相似文献   
110.

Background

Mutations of NRAS and BRAF have been described in Caucasian melanomas. However, the status and the clinical significance of BRAF and NRAS mutations in the Asian population have not been investigated on a large scale.

Methods

Melanoma samples (n = 432) were analysed for mutations in exons 11 and 15 of the BRAF gene, and exons 1 and 2 of the NRAS gene in genomic DNA by polymerase chain reaction (PCR) amplification and Sanger sequencing. Mutations of BRAF and NRAS genes were correlated to clinicopathologic features and prognosis of the patients.

Results

The incidence of somatic mutations within the BRAF and NRAS genes was 25.5% (110/432) and 7.2% (31/432), respectively. Among the 110 patients with BRAF mutations, 98 patients (89.1%) had V600E mutations. Melanomas without chronic sun-induced damage (Non-CSD) were more likely (P < 0.01) to show BRAF mutations while NRAS mutation frequency was unbiased between melanoma subtypes. Patients with genetic mutations in BRAF (P < 0.01) or NRAS (P = 0.04) gene are more likely to have ulceration as compared to patients without BRAF or NRAS mutations, respectively. Both BRAF (P = 0.003) and NRAS mutations (P = 0.031) are inversely correlated to overall survival.

Conclusions

BRAF mutation is frequent while mutations in NRAS gene are rare. The most prevalent BRAF mutation type is V600E. Patients with mutations in BRAF or NRAS gene are frequently present with ulceration, and mutation in BRAF or NRAS gene is indicator for poor prognosis. Our study may warrant a clinical trial of kinase inhibitors targeting BRAF V600E in Chinese and Asian melanoma patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号