首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1266篇
  免费   92篇
  国内免费   49篇
耳鼻咽喉   4篇
儿科学   7篇
妇产科学   14篇
基础医学   144篇
口腔科学   7篇
临床医学   42篇
内科学   172篇
皮肤病学   8篇
神经病学   273篇
特种医学   18篇
外科学   37篇
综合类   56篇
预防医学   31篇
眼科学   16篇
药学   451篇
中国医学   37篇
肿瘤学   90篇
  2024年   2篇
  2023年   14篇
  2022年   31篇
  2021年   39篇
  2020年   26篇
  2019年   45篇
  2018年   48篇
  2017年   63篇
  2016年   58篇
  2015年   53篇
  2014年   61篇
  2013年   125篇
  2012年   70篇
  2011年   75篇
  2010年   63篇
  2009年   95篇
  2008年   84篇
  2007年   65篇
  2006年   71篇
  2005年   101篇
  2004年   64篇
  2003年   42篇
  2002年   22篇
  2001年   17篇
  2000年   14篇
  1999年   12篇
  1998年   6篇
  1997年   17篇
  1996年   3篇
  1995年   4篇
  1994年   5篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
排序方式: 共有1407条查询结果,搜索用时 62 毫秒
91.
Progressive familial intrahepatic cholestasis types 1, 2 and 3 are childhood diseases of the liver. Benign recurrent intrahepatic cholestasis is predominantly an adult form with similar clinical symptoms that spontaneously resolve. These genetic disorders have significantly helped to unravel the basic mechanisms of the canalicular bile transport processes. Progressive familial intrahepatic cholestasis type 1 involves a gene also linked to benign recurrent intrahepatic cholestasis. The gene codes for an aminophospholipid translocase protein that maintains the integrity of the membrane. How a mutation in this protein causes cholestasis is unknown but is thought to involve the enterohepatic recirculation of bile acids. Progressive familial intrahepatic cholestasis types 2 and 3 involve the canalicular bile salt export pump and a phospholipid translocase, respectively, both of which are fundamental to bile secretion. This review covers the clinical manifestations, genetics, treatment and mechanism of each disease.  相似文献   
92.
Glucose transporter (GLUT) 4 plays an important role in insulin-induced glucose uptake in skeletal muscle and white adipose tissue. Although GLUT4 is abundant in the hypothalamus as well as in these peripheral tissues, little is known about the role of GLUT4 in the hypothalamus. In this study, we examined the subcellular localization of GLUT4 and the activation of insulin signaling pathways in the hypothalamic arcuate nucleus of ob/ob mice under basal conditions. The expression of GLUT4 in the arcuate nucleus of ob/ob mice was higher than that in lean mice. Interestingly, GLUT4 on the plasma membrane increased significantly in neurons of the arcuate nucleus of ob/ob mice when compared to that in lean mice. Because serum insulin levels of ob/ob mice were very high, we hypothesized that insulin strongly stimulates GLUT4 translocation in the arcuate nucleus of ob/ob mice. Unexpectedly, tyrosine phosphorylation of IR and insulin receptor substrate-1 (IRS-1) was faint in the hypothalamus of lean and ob/ob mice. In addition, phosphorylation of IRS-1 at Ser307 in the hypothalamus of ob/ob mice was higher when compared to that in lean mice, suggesting that insulin signaling is impaired by phosphorylation of IRS-1 at Ser307 in the hypothalamus of ob/ob mice. However, serine phosphorylation of Akt in the arcuate nucleus of ob/ob mice increased significantly when compared to that in lean mice. Furthermore, the expression of brain-derived neurotrophic factor, an activator of PI3K-Akt pathway in neurons, increased significantly in the ventromedial hypothalamus of ob/ob mice. We discuss the possibility of novel pathways which induce the translocation of GLUT4 in the arcuate nucleus of ob/ob mice.  相似文献   
93.
Semeniken K  Hanin I  Dudas B 《Brain research》2005,1049(2):240-243
Ethylcholine aziridinium (AF64A) induces cholinergic lesion in animal models of AD. Although higher concentrations of AF64A are known to induce nonspecific, cholinergic, and non-cholinergic lesions, low concentrations are believed to be selectively cholinotoxic. However, morphological evidence of this phenomenon has not been demonstrated yet. The present study demonstrates that while AF64A damaged septal cholinergic fibers, periventricular GnRH-immunoreactive fibers remained intact, confirming the highly selective cholinotoxicity of AF64A at appropriate concentrations.  相似文献   
94.
Yang YL  Meng CH  Ding JH  He HR  Ellsworth K  Wu J  Hu G 《Brain research》2005,1049(1):80-88
Iptakalim hydrochloride (Ipt), a novel antihypertensive drug, exhibits K(ATP) channel activation. Here, we report that Ipt remarkably protects cells against neurotoxin-induced glutamate transporter dysfunction in in vitro and in vivo models. Chronic exposure of cultured PC12 cells to neurotoxins, such as 6-OHDA, MPP+, or rotenone, decreased overall [3H]-glutamate uptake in a concentration-dependent manner. Pre-treatment using 10 microM Ipt significantly protected cells against neurotoxin-induced glutamate uptake diminishment, and this protection was abolished by the K(ATP) channel blocker glibenclamide (20 microM), suggesting that the protective mechanisms may involve the opening of K(ATP) channels. In 6-OHDA-treated rats (as an in vivo Parkinson's disease model), [3H]-glutamate uptake was significantly lower in synaptosomes isolated from the striatum and cerebral cortex, but not the hippocampus. Pre-conditioning using 10, 50, and 100 microM Ipt significantly restored glutamate uptake impairment and these protections were abolished by blockade of K(ATP) channels. It is concluded that Ipt exhibits substantial protection of cells against neurotoxicity in in vitro and in vivo models. The cellular mechanisms of this protective effect may involve the opening of K(ATP) channels. Collectively, Ipt may serve as a novel and effective drug for PD therapy.  相似文献   
95.
The two neurosteroids 3alpha-hydroxy-5alpha-pregnane-20-one (allopregnanolone; AlloP) and pregnenolone sulfate (PregS) affect neuronal GABA(A) receptors differently. While AlloP mainly potentiates the currents through GABA(A) receptors, PregS reduces such currents. The present study aimed at clarifying the interaction of AlloP and PregS at GABA(A) receptors in neurons from the medial preoptic nucleus of male rat. AlloP has previously been shown to dramatically prolong GABA-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) in these neurons. Here, by recording sIPSCs under voltage-clamp conditions with the perforated-patch technique, it was shown that PregS by itself did not significantly affect the amplitude or time course of such currents. However, PregS, in a concentration-dependent manner, reduced the AlloP-evoked prolongation of sIPSC decay when the two neurosteroids were applied together. In contrast to sIPSC amplitude and time course, sIPSC frequency was significantly reduced by 10 microM PregS alone. Further, although 1.0 microM AlloP alone induced a clear increase in sIPSC frequency, the frequency was not significantly different from control when 1.0 microM AlloP was applied in combination with 10 microM PregS. In addition to the effects on sIPSC parameters, PregS reduced the baseline current evoked by 1.0 microM AlloP in the absence of GABA application or synaptic activity. PregS by itself did not significantly affect the baseline current. The main effects of AlloP and PregS on the sIPSC time course were mimicked by a simplified model with AlloP assumed to reduce the rate of GABA unbinding from the receptor and PregS assumed to increase the rate of desensitization.  相似文献   
96.
Activation of muscarinic receptors has been shown to be neuroprotective in several different models of apoptosis, but the mechanism of this action is unknown. Therefore, we investigated the intermediate signals mediating the anti-apoptotic action of muscarinic receptor activation in SH-SY5Y cells. Inhibition of most muscarinic receptor-coupled actions had no effect on protection, but inhibition of Rho kinase with HA-1077 concentration-dependently was able to completely block the protection against H(2)O(2)- and camptothecin-induced apoptosis produced by stimulation of muscarinic receptors. These results demonstrate that the anti-apoptotic effect provided by muscarinic receptor stimulation is dependent on the activity of Rho kinase.  相似文献   
97.
In aged cats, light microscopic studies revealed significant decrease in the soma size of choline acetyltransferase (ChAT)-positive neurons in the laterodorsal and pedunculo-pontine tegmental nuclei (LDT and PPT), compared with adult control animals. In addition, a significant reduction of the total dendritic length and total dendritic segment number of ChAT-positive neurons was detected in both the LDT and PPT of aged cats. However, in contrast to the changes of soma and dendrites, no significant changes in the number of ChAT-positive neurons in aged were found comparing to that in the control cats in both the LDT and PPT; nor were there differences in the staining intensity of the somata of neurons in the adult and aged cats. Electron microscopic analysis highlighted degenerative changes in cholinergic neurons in the LDT and PPT of aged cats which included somata with intracytoplasmic vacuoles, darkened mitochondria, depletion of dendritic microtubules and severe demyelination of axons. These data indicate that profound atrophic changes occur in cholinergic systems of the LDT and PPT as a consequence of the aging process. These alterations likely reflect the cellular bases for the age-related changes in REM sleep that occur in old animals.  相似文献   
98.
Lin JA  Lee MS  Wu CT  Yeh CC  Lin SL  Wen ZH  Wong CS 《Brain research》2005,1054(2):167-173
This study was designed to investigate the effect of acute and chronic intrathecal (i.t.) injection of gabapentin (GBP) on the antinociceptive effect of morphine and tolerance development using a tail-flick latency test. Levels of excitatory amino acids (EAA) in i.t. CSF dialysates were also measured by high performance liquid chromatography. Male Wistar rats were implanted with either one or two i.t. catheters for drug injection or pump infusion and with a microdialysis probe for CSF dialysate collection. The effect of acute GBP (10 microg i.t.) injection on the morphine dose response was examined in both na?ve rats and rats made tolerant by continuous infusion of morphine (15 microg/h i.t.) for 5 days. At such a low dose (10 microg i.t.), GBP did not enhance morphine's antinociception in na?ve rats. In morphine-tolerant rats, however, acute GBP (10 microg i.t.) injection potentiated morphine's antinociception and yielded a 14.6-fold shift in morphine's dose-response curve. When GBP (10 microg/h i.t.) was co-infused with morphine (15 microg/h i.t.) to examine its effect on the development of morphine tolerance, GBP attenuated the development of morphine tolerance. The effect of GBP and morphine on CSF glutamate and aspartate levels was examined in na?ve rats, and the effect of morphine challenge on CSF glutamate and aspartate levels was examined in rats previously infused for 5 days with morphine alone or morphine plus GBP. Acute injection of GBP (10 microg i.t.), morphine (50 microg i.t.), or GBP (10 microg i.t.) followed by morphine (50 microg i.t.) 30 min later had no significant effect on CSF EAA concentration in na?ve rats; however, in tolerant rats, morphine challenge (50 microg i.t.) increased aspartate and glutamate levels to 221 +/- 22% and 296 +/- 43%, respectively, of those before morphine challenge, and this phenomenon was inhibited by GBP co-infusion. Our results show that GBP, at a dose without enhanced effect on morphine's antinociception in na?ve rats, not only potentiates morphine's antinociceptive effect in morphine-tolerant rats but also attenuates the development of morphine tolerance. The mechanism of the effect of GBP on morphine tolerance might be via suppression of the EAA concentration in spinal CSF dialysate.  相似文献   
99.
Mehra RD  Sharma K  Nyakas C  Vij U 《Brain research》2005,1056(1):22-35
We have studied the distribution pattern and levels of expression of two estrogen receptor (ER) subtypes, ERalpha and ERbeta, in the normal adult (n = 10) and the aged (n = 10) female rat hippocampus with the objective to establish baseline data and the changes that occur during aging. Techniques including immunohistochemical localization, co-localization with double immunofluorescence and confocal microscopy, image analysis including neuronal counts/mm(2) area and measurements of optical density (OD) of immunoreactivity in immunoreactive neurons and Western blot analysis have been used. The results revealed ERalpha and ERbeta positive neurons in all subfields of the hippocampus with maximum presence in the stratum pyramidale of CA3. Some stained neurons in CA3 exhibited pyramidal neuron like morphological characteristics; such neurons were not found in CA1. All other immunoreactive neurons showed non-pyramidal neuron like morphological characteristics. Neuronal counts revealed a significant decrease in the number of immunoreactive neurons in CA3-CA1 of aged hippocampus. The percent decrease in counts of the immunoreactive neurons/mm(2) area in the aged rat (compared to the adult) was 78% for the ERalpha and 88% for the ERbeta (P < 0.001) in CA3. In CA1, it was 56% (P < 0.001) and 41% (P < 0.01) respectively. The OD of immunoreactivity was significantly decreased (P < 0.01) in CA3 but increased (P < 0.01) in the CA1 immunoreactive neurons. Western blot analysis also showed a significant decline (P < 0.01) in the levels of the ERalpha and ERbeta proteins in the aged hippocampus. Co-localization revealed that the two ER subtypes do co-exist in the same hippocampal neurons.  相似文献   
100.
Concomitant abuse of buprenorphine (BPN) and benzodiazepines (BZD) may relate to a pharmacodynamic interaction between the two. The objective of the present work was to investigate the acute and chronic effects of clorazepate (CRZ) alone or in combination with BPN on selective kappa opiate tritiated ligand [3H]-U69 593 and delta opiate radioligand [3H]-deltorphine II binding in the rat brain. Bmax (maximal receptor density) and Kd (the dissociation constant) were directly determined at different brain regions of interest (ROI) selected for high densities of kappa and/or delta receptors in rats treated with BPN and/or CRZ. The agents were administered either once or for 21 consecutive days. Differences in Bmax and Kd (for both specific ligands) were related to drug treatment and receptor location. Globally, single BPN administration induced no changes in kappa or delta opiate receptor binding, whereas repeated BPN administration up-regulated kappa receptor density and decreased delta affinity. At the kappa receptor level, repeated administration of CRZ acted only on Kd, whereas the delta receptor was up-regulated. Repeated addition of CRZ to BPN had no effect on kappa receptor Bmax versus chronic controls. By significantly decreasing Bmax, CRZ nullified the effect of chronic BPN on the kappa receptor. The modifications were strongest in the nucleus accumbens, where both types of receptor occur. Treatments had region-selective effects in some brain areas, such as the amygdala, periaqueductal gray matter, hypothalamus and caudate putamen. Increased mu and delta receptor densities would be expected to provide reinforcement by enhancing reward, and impairment of kappa receptor availability would be expected to decrease aversion. The effects described are likely to influence addictive behavior among people abusing BZD and BPN.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号