首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9226篇
  免费   693篇
  国内免费   298篇
耳鼻咽喉   19篇
儿科学   168篇
妇产科学   57篇
基础医学   1015篇
口腔科学   342篇
临床医学   707篇
内科学   1308篇
皮肤病学   165篇
神经病学   1148篇
特种医学   1645篇
外科学   628篇
综合类   630篇
预防医学   215篇
眼科学   60篇
药学   1414篇
中国医学   452篇
肿瘤学   244篇
  2024年   16篇
  2023年   112篇
  2022年   355篇
  2021年   456篇
  2020年   233篇
  2019年   274篇
  2018年   307篇
  2017年   311篇
  2016年   348篇
  2015年   403篇
  2014年   626篇
  2013年   601篇
  2012年   565篇
  2011年   669篇
  2010年   552篇
  2009年   520篇
  2008年   516篇
  2007年   434篇
  2006年   382篇
  2005年   403篇
  2004年   301篇
  2003年   261篇
  2002年   210篇
  2001年   178篇
  2000年   135篇
  1999年   113篇
  1998年   103篇
  1997年   112篇
  1996年   110篇
  1995年   114篇
  1994年   115篇
  1993年   95篇
  1992年   59篇
  1991年   34篇
  1990年   38篇
  1989年   22篇
  1988年   22篇
  1987年   18篇
  1986年   12篇
  1985年   22篇
  1984年   11篇
  1983年   11篇
  1982年   9篇
  1981年   9篇
  1980年   5篇
  1979年   5篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Magnetic nanostructures of CoFe2O4 were synthesized via a microwave-assisted hydrothermal route. The prepared nanostructures were investigated using X-ray diffraction (XRD), field emission electron microscopy (FE-SEM), energy dispersive X-ray (EDX) spectroscopy, high-resolution transmission electron microscopy (HR-TEM), selective area electron diffraction (SAED) pattern, DC magnetization, and dielectric spectroscopy measurements. The crystal structure studied using HR-TEM, SAED, and XRD patterns revealed that the synthesized nanostructures had a single-phase nature and ruled out the possibility of any secondary phase. The lattice parameters and unit cell volume determined from the XRD data were found to be 8.4821 Å and 583.88 Å3. The average crystallite size (~7.0 nm) was determined using Scherrer’s equation. The FE-SEM and TEM micrographs revealed that the prepared nanostructures had a spherical shape morphology. The EDX results showed that the major elements present in the samples were Co, Fe, and O. The magnetization (M) versus temperature (T) measurements specified that the CoFe2O4 nanostructures showed ferromagnetic ordering at room temperature. The blocking temperature (TB) determined using the M-T curve was found to be 315 K. The magnetic hysteresis (M-H) loop of the CoFe2O4 nanostructures recorded at different temperatures showed the ferromagnetic behavior of the CoFe2O4 nanostructures at temperatures of 200 K and 300 K, and a superparamagnetic behavior at 350 K. The dielectric spectroscopy studies revealed a dielectric constant (ε′) and loss tangent (tanδ) decrease with the increase in the frequency, as well as demonstrating a normal dispersion behavior, which is due to the Maxwell–Wagner type of interfacial polarization. The values of ε′ and tanδ were observed to increase with the increase in the temperature.  相似文献   
92.
Layered TiS2 intercalated with linear alkylamines has recently attracted significant interest as a model compound for flexible n-type thermoelectric applications, showing remarkably high power factors at room temperature. The thermal and, particularly, environmental stability of such materials is, however, a still an open challenge. In this paper, we show that amine-intercalated TiS2 prepared by a simple mechanochemical process is prone to chemical decomposition through sulfur exsolution, and that the presence of molecular oxygen is likely to mediate the decomposition reaction. Through computational analysis of the possible reaction pathways, we propose that Ti-N adducts are formed as a consequence of amine groups substituting for S vacancies on the internal surfaces of the S-Ti-S layers. These findings provide insights for possible future applications of similar hybrid compounds as devices operating in ambient conditions, and suggest isolating them from atmospheric oxygen.  相似文献   
93.
White-light endoscopy with tissue biopsy is the gold standard interface for diagnosing gastric neoplastic lesions. However, misdiagnosis of lesions is a challenge because of operator variability and learning curve issues. These issues have not been resolved despite the introduction of advanced imaging technologies, including narrow band imaging, and confocal laser endomicroscopy. To ensure consistently high diagnostic accuracy among endoscopists, artificial intelligence (AI) has recently been introduced to assist endoscopists in the diagnosis of gastric neoplasia. Current endoscopic AI systems for endoscopic diagnosis are mostly based upon interpretation of endoscopic images. In real-life application, the image-based AI system remains reliant upon skilful operators who will need to capture sufficiently good quality images for the AI system to analyze. Such an ideal situation may not always be possible in routine practice. In contrast, non-image-based AI is less constraint by these requirements. Our group has recently developed an endoscopic Raman fibre-optic probe that can be delivered into the gastrointestinal tract via the working channel of any endoscopy for Raman measurements. We have also successfully incorporated the endoscopic Raman spectroscopic system with an AI system. Proof of effectiveness has been demonstrated in in vivo studies using the Raman endoscopic system in close to 1,000 patients. The system was able to classify normal gastric tissue, gastric intestinal metaplasia, gastric dysplasia and gastric cancer, with diagnostic accuracy of >85%. Because of the excellent correlation between Raman spectra and histopathology, the Raman-AI system can provide optical diagnosis, thus allowing the endoscopists to make clinical decisions on the spot. Furthermore, by allowing non-expert endoscopists to make real-time decisions as well as expert endoscopists, the system will enable consistency of care.  相似文献   
94.
Aging is by far the most prominent risk factor for Alzheimer's disease (AD), and both aging and AD are associated with apparent metabolic alterations. As developing effective therapeutic interventions to treat AD is clearly in urgent need, the impact of modulating whole-body and intracellular metabolism in preclinical models and in human patients, on disease pathogenesis, have been explored. There is also an increasing awareness of differential risk and potential targeting strategies related to biological sex, microbiome, and circadian regulation. As a major part of intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been considered for AD therapeutic interventions. This review summarizes and highlights these efforts.  相似文献   
95.
The gas-phase reaction dynamics and kinetics in a laser induced plasma are very much dependent on the interactions of the evaporated target material and the background gas. For metal (M) and metal–oxygen (MO) species ablated in an Ar and O2 background, the expansion dynamics in O2 are similar to the expansion dynamics in Ar for M+ ions with an MO+ dissociation energy smaller than O2. This is different for metal ions with an MO+ dissociation energy larger than for O2. This study shows that the plume expansion in O2 differentiates itself from the expansion in Ar due to the formation of MO+ species. It also shows that at a high oxygen background pressure, the preferred kinetic energy range to form MO species as a result of chemical reactions in an expanding plasma, is up to 5 eV.  相似文献   
96.
The impact of the amount of durum wheat bran additive used on the selected structural, mechanical, and spectroscopic properties of thermoplastic starch moldings was examined in this study. Bran was added to corn starch from 10 to 60% by weight in the blends. Four temperature settings were used for the high-pressure injection: 120, 140, 160, and 180 °C. The highest value of elongation at break (8.53%) was observed for moldings containing 60% bran. Moreover, for these moldings, the tensile strength and flexural strength were lower (appropriately 3.43 MPa and 27.14 MPa). The highest deformation at break (1.56%) were obtained for samples with 60% bran and injection molded at 180 °C. We saw that higher bran content (50 and 60%) and a higher injection molding temperature (160 °C and 180 °C) significantly changed the color of the samples. The most significant changes in the FTIR spectra were observed at 3292 and 1644 cm−1 and in the region of 1460–1240 cm−1. Moreover, notable changes were observed in the intensity ratio of bands at 1015 and 955 cm−1. The changes observed correspond well with the amount of additive used and with the injection temperature applied; thus it may be considered as a marker of interactions affecting plasticization of the material obtained.  相似文献   
97.
Nanoindentations and the Raman spectroscopy measurements were carried out on the (001) surface of undoped and S-doped InP crystal. The samples were indented with the maximum load ranging from 15 mN to 100 mN. The phase transition B3→B1 was not confirmed by spectroscopic experiments, indicating a plastic deformation mechanism governed by dislocations activity. Increasing the maximum indentation load shifts and the longitudinal and transverse optical Raman bands to lower frequencies reveals a reduction in the elastic energy stored in the plastic zone right below the indentation imprint. Mechanical experiments have shown that a shift in Raman bands occurs alongside the indentation size effect. Indeed, the hardness of undoped and S-doped InP crystal decreases as a function of the maximum indentation load.  相似文献   
98.
微量元素在急性脊髓损伤中的变化   总被引:1,自引:0,他引:1  
目的:观察急性性脊髓损伤后脊髓组织和血清中微量元素(铜锌)含量的变化,研究微量元素与急性脊髓损伤的关系,并探讨其可能的发一机理,方法:用改良Allen 氏脊髓损伤模型,选用家兔36只,打击能量为120gcf,用原了光谱法测定伤前,伤后6h,24h,48h,72h和6d时脊髓组织和历清中的铜锌的含量,结果:脊髓损伤后血清和脊髓组织中铜含量升高,而锌含量则持续性下降,结论:脊髓损伤后血清和脊髓组织中铜含量升高和锌含量下降在脊髓继发性损伤过程中可能起着重要作用。  相似文献   
99.
目的:对近红外光谱(NIR)分析技术在热毒宁注射液栀子萃取过程中可行性进行分析研究。方法:收集7批共147个栀子萃取液样品,扫描NIR离线光谱,测定栀子苷含量和固含量,应用偏最小二乘法建立定量校正模型,并用此模型进行预测。结果:建立的栀子苷和固含量模型校正集R2分别为0.987 2,0.994 7,RMSEC分别为1.460 9,2.367 7,说明所建模型性能良好。该模型对20个栀子萃取液样品进行预测,栀子苷和固含量的R2分别为0.980 7和0.986 1,RMSEP分别为1.827 5和7.307 7,RSEP分别为3.08%和5.29%均小于6%,能够满足中药生产过程中质量控制要求。结论:建立的近红外离线定量模型可以准确预测栀子苷含量和固含量,证实了NIR技术在热毒宁注射液栀子萃取过程应用的可行性。  相似文献   
100.
Single wall carbon nanotubes (SWCNTs) are advanced materials with the potential for a myriad of diverse applications, including biological technologies and large‐scale usage with the potential for environmental impacts. SWCNTs have been exposed to developing organisms to determine their effects on embryogenesis, and results have been inconsistent arising, in part, from differing material quality, dispersion status, material size, impurity from catalysts and stability. For this study, we utilized highly purified SWCNT samples with short, uniform lengths (145 ± 17 nm) well dispersed in solution. To test high exposure doses, we microinjected > 500 µg ml–1 SWCNT concentrations into the well‐established embryogenesis model, Xenopus laevis, and determined embryo compatibility and subcellular localization during development. SWCNTs localized within cellular progeny of the microinjected cells, but were heterogeneously distributed throughout the target‐injected tissue. Co‐registering unique Raman spectral intensity of SWCNTs with images of fluorescently labeled subcellular compartments demonstrated that even at regions of highest SWCNT concentration, there were no gross alterations to subcellular microstructures, including filamentous actin, endoplasmic reticulum and vesicles. Furthermore, SWCNTs did not aggregate and localized to the perinuclear subcellular region. Combined, these results suggest that purified and dispersed SWCNTs are not toxic to X. laevis animal cap ectoderm and may be suitable candidate materials for biological applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号