首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   710篇
  免费   49篇
  国内免费   2篇
儿科学   4篇
妇产科学   1篇
基础医学   121篇
口腔科学   2篇
临床医学   26篇
内科学   26篇
皮肤病学   1篇
神经病学   371篇
特种医学   5篇
外科学   44篇
综合类   14篇
预防医学   20篇
眼科学   5篇
药学   94篇
中国医学   24篇
肿瘤学   3篇
  2024年   6篇
  2023年   21篇
  2022年   54篇
  2021年   102篇
  2020年   85篇
  2019年   50篇
  2018年   27篇
  2017年   35篇
  2016年   59篇
  2015年   40篇
  2014年   50篇
  2013年   32篇
  2012年   29篇
  2011年   31篇
  2010年   21篇
  2009年   23篇
  2008年   30篇
  2007年   16篇
  2006年   17篇
  2005年   11篇
  2004年   6篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   3篇
  1998年   1篇
  1996年   1篇
排序方式: 共有761条查询结果,搜索用时 15 毫秒
161.
Microglia-mediated inflammation plays an important role in the pathogenesis of several neurodegenerative diseases including Parkinson’s disease (PD). Recently, autophagy has been linked to the regulation of the inflammatory response. However, the potential role of microglial autophagy in the context of PD pathology has not been characterized. In the present study, we investigated whether impaired microglial autophagy would affect dopaminergic neurodegeneration and neuroinflammation both in vivo and in vitro. In vitro, BV2 microglial cells were exposed to LPS in the presence or absence of autophagy-related gene 5 (Atg5) small interference RNA (Atg5-siRNA). For in vivo study, microglial Atg5 conditional knockout (Atg5flox/flox; CX3CR1-Cre) mice and their wild-type littermates (Atg5flox/flox) were intraperitoneally injected with MPTP to induce experimental PD model. Our results revealed that disruption of autophagy by Atg5-siRNA aggravated LPS-induced inflammatory responses in BV2 cells and caused greater apoptosis in SH-SY5Y cells treated with BV2 conditioned medium. In mice, impaired autophagy in microglia exacerbated dopaminergic neuron loss in response to MPTP. The mechanism by which the deficiency of microglial autophagy promoted neuroinflammation and dopaminergic neurodegeneration was related to the regulation of NLRP3 inflammasome activation. These findings demonstrate that impairing microglial autophagy aggravates pro-inflammatory responses to LPS and exacerbates MPTP-induced neurodegeneration by modulating NLRP3 inflammasome responses. We anticipate that enhancing microglial autophagy may be a promising new therapeutic strategy for PD.  相似文献   
162.
163.
Alzheimer's disease (AD) is an irreversible neurodegenerative disease characterized by progressive cognitive dysfunction and memory impairment. Dopamine is an important catecholaminergic neurotransmitter that controls movement, reward, motivation, and cognition. Recently, dopamine receptors were reported to regulate immune system in both periphery and central nervous system. However, whether dopamine D1 receptor (DRD1) activation could improve neuroinflammation in AD conditions remains unknown. The present study aimed to investigate the therapeutic effects and underlying mechanisms of a potent and selective DRD1 agonist A-68930 on Aβ1-42-induced mice. Here we showed that intraperitoneal injection of A-68930 significantly ameliorated Aβ1–42-induced cognitive dysfunction in mice. Moreover, both in vivo and in vitro data showed that A-68930-induced DRD1 activation significantly inhibited NLRP3 inflammasome-dependent neuroinflammation induced by Aβ1–42, and this effect may be mediated by the activation of AMPK/autophagy signaling pathway, which enhanced NLRP3 inflammasome degradation and thus decreased the secretion of IL-1β and IL-18. The present study suggests that A-68930-induced DRD1 signaling efficiently alleviates Aβ1–42-induced cognitive impairment and neuroinflammation in mice and BV2 cells, and DRD1 may become a promising therapeutic target for AD.  相似文献   
164.
Endoplasmic reticulum (ER) stress is strictly linked to neuroinflammation and involves in the development of neurodegenerative disorders. Protein disulfide isomerase (PDI) is an enzyme that catalyzes formation and isomerization of disulfide bonds and also acts as a chaperone that survives the cells against cell death by removal of misfolded proteins. Our previous work revealed that PDI is explicitly upregulated in response to myelin oligodendrocyte glycoprotein (MOG)-induced ER stress in the brain of experimental autoimmune encephalomyelitis (EAE) mice. The significance of overexpression of PDI in the apoptosis of neural cells prompted us to study the effect of CCF642, efficient inhibitor of PDI, in the recovery of EAE clinical symptoms. Using this in vivo model, we characterized the ability of CCF642 to decrease the expression of ER stress markers and neuroinflammation in the hippocampus of EAE mice. Our observations suggested that CCF642 administration attenuates EAE clinical symptoms and the expression of ER stress-related proteins. Further, it suppressed the inflammatory infiltration of CD4 + T cells and the activation of hippocampus-resident microglia and Th17 cells. We reported here that the inhibition of PDI protected EAE mice against neuronal apoptosis induced by prolonged ER stress and resulted in neuroprotection.  相似文献   
165.
Estrogen replacement therapy (ERT) has been proven to relieve menopausal-related mental disorders including depression in postmenopausal women. However, the unsafety of ERT hinders its clinical use. In this study, we would evaluate whether vitamin D (VD), a hormone with optimal safety profile, could relieve the depressive-like symptom in ovariectomized (OVX) rats. Furthermore, we would determine whether vitamin D and 17β-estradiol (E2) exert neurological function through their immunomodulatory effect in OVX rats. Middle-aged female SD rats were randomly divided into four groups, namely, control (SHAM), OVX, OVX + VD, and OVX + E2. Vitamin D (calcitriol, 100 ng/kg) and 17β-estradiol (30 μg/kg) had been daily gavaged in the OVX + VD and OVX + E2 group, respectively. After 10-week administration, vitamin D and 17β-estradiol both showed anti-depressive-like activity in the OVX rats. Using the method of immunofluorescent staining and western blot, vitamin D and 17β-estradiol were demonstrated to upregulate each other's receptors, including VDR, ERα, and ERβ in the hippocampus of OVX rats. Additionally, the upregulation of VDR, calbindin-D28k, and calbindin-D9k suggested that the vitamin D signaling system was amplified by vitamin D and 17β-estradiol. Vitamin D and 17β-estradiol showed neuroprotective effects by decreasing OVX-induced apoptosis and neuronal damage, regulating the AMPK/NF-κB signaling pathway, and reducing the proinflammatory cytokines (IL-1β, IL-6, and TNFα), as well as iNOS and COX-2 in the hippocampus of OVX rats. Collectively, the present study demonstrated that vitamin D and 17β-estradiol could upregulate each other's receptors and regulate the AMPK/NF-κB pathway to relieve the OVX-induced depressive-like state. The results could stimulate translational research towards the vitamin D potential for prevention or treatment of menopause-related depression.  相似文献   
166.
Recent work from our laboratory and others has shown that certain stressors increase expression of the pro-inflammatory cytokine interleukin-1β (IL-1) in the hypothalamus. The first goal of the following studies was to assess the impact of acute stress on other key inflammatory factors, including both cytokines and cell surface markers for immune-derived cells resident to the CNS in adult male Sprague Dawley rats exposed to intermittent footshock (80 shocks, 90 s variable ITI, 5 s each). While scattered changes in IL-6 and GFAP were observed in the hippocampus and cortex, we found the hypothalamus to be exquisitely sensitive to the effects of footshock. At the level of the hypothalamus, mRNA for IL-1 and CD14 were significantly increased, while at the same time CD200R mRNA was significantly decreased. A subsequent experiment demonstrated that propranolol (20 mg/kg i.p.) blocked the increase in IL-1 and CD14 mRNA observed in the hypothalamus, while the decrease in CD200R was unaffected by propranolol. Interestingly, inhibition of glucocorticoid synthesis via injection of metyrapone (50 mg/kg s.c.) plus aminoglutethimide (100 mg/kg s.c.) increased basal IL-1 mRNA and augmented IL-1 and CD14 expression provoked by footshock. Injection of minocycline, a putative microglial inhibitor, blocked the IL-1 response to footshock, while CD14 and CD200R were unaffected. Together, these gene expression changes (i) provide compelling evidence that stress may provoke neuroinflammatory changes that extend well beyond isolated changes in a single cytokine; (ii) suggest opposing roles for classic stress-responsive factors (norepinephrine and corticosterone) in the modulation of stress-related neuroinflammation; (iii) indicate microglia within the hypothalamus may be key players in stress-related neuroinflammation; and (iv) provide a potential mechanism (increased CD14) by which acute stress primes reactivity to later immune challenge.  相似文献   
167.
Epidemiological studies have reported that the incidence of Parkinson's disease (PD) is higher in postmenopausal than in premenopausal women of similar age. Several laboratory observations have revealed that estrogen has protective effects against dopaminergic toxins. The mechanism by which estrogen protects dopaminergic neurons has not been clarified, although estrogen-induced attenuation of the neuroinflammatory response plays a major role. We have recently shown that activation of the nigral renin-angiotensin system (RAS), via type 1 (AT1) receptors, leads to NADPH complex and microglial activation and induces dopaminergic neuron death. In the present study we investigated the effect of ovariectomy and estrogen replacement on the nigral RAS and on dopaminergic degeneration induced by intrastriatal injection of 6-OHDA. We observed a marked loss of dopaminergic neurons in ovariectomized rats treated with 6-OHDA, which was significantly reduced by estrogen replacement or treatment with the AT1 receptor antagonist candesartan. We also observed that estrogen replacement induces significant downregulation of the activity of the angiotensin converting enzyme as well as downregulation of AT1 receptors, upregulation of AT2 receptors and downregulation of the NADPH complex activity in the substantia nigra in comparison with ovariectomized rats. The present results suggest that estrogen-induced down-regulation of RAS and NADPH activity may be associated with the reduced risk of PD in premenopausal women, and increased risk in conditions causing early reduction in endogenous estrogen, and that manipulation of brain RAS system may be an efficient approach for the prevention or coadjutant treatment of PD in estrogen-deficient women.  相似文献   
168.
Mesenchymal stem cells (MSCs) are reported to possess immunomodulatory properties. Previous reports have demonstrated the beneficial effects of MSC-transplantation in focal cerebral ischemia animal models. In this study, we have investigated the neuroimmunomodulatory functions of human MSCs, transplanted in a rat focal ischemia model of transient middle cerebral artery occlusion (MCAO). Our results revealed that in a human mesenchymal stem cell line, B10 cell transplantation decreased the accumulation of Iba-1(+) microglia and GFAP(+) astrocytes, and inhibited proinflammatory gene expression in the core and ischemic border zone (IBZ). Among the proinflammatory genes iNOS, which was expressed in microglia/macrophage, was persistently inhibited up to 7days after MCAO. In vivo laser capture microdissection and double immunofluorescence staining, and in vitro B10 cell culture experiments showed that, in inflammatory conditions, B10 cells expressed cytokines and growth factors including IL-5, fractalkine, IGF-1, GDNF and VEGF. Fractalkine and IL-5 inhibited cytokine-induced proinflammatory gene expression including iNOS in a human microglia cell line. Thus, our results demonstrate that MSC transplantation suppresses MCAO focal ischemia-induced inflammation, possibly through expression of fractalkine and IL-5.  相似文献   
169.
目的:观察电针对脑出血(ICH)大鼠运动功能和白质损伤(WMI)的影响。方法:将36只无特定病原体(SPF)级大鼠按随机数字表法分为假手术(SHAM)组、ICH组、ICH+电针组,每组12只;其中ICH组、ICH+电针组被制备右侧纹状体脑出血模型;ICH+电针组给予电针曲池、足三里穴干预,30 min/次,1次/d,连续干预7 d;7 d后采用转角测试、转棒实验测试评估运动功能;劳克坚牢蓝(LFB)染色、髓鞘碱性蛋白(MBP)免疫荧光表达评估WMI情况;神经胶质细胞原纤维酸性蛋白(GFAP)和神经元核抗原(NeuN)免疫荧光染色检测星形胶质细胞活化和神经元损伤情况;酶联免疫吸附试验(ELISA)检测肿瘤坏死因子-α(TNF-α)、白细胞介素-1β(IL-1β)的表达水平。结果:电针治疗降低脑出血大鼠右转的频率、增加转棒停留时间(P<0.05),电针干预能够减少脑出血带来的髓鞘破坏、增加MBP表达、减少星形胶质细胞活化数量和神经元损伤、抑制TNF-α、IL-1β表达(P<0.05)。结论:电针通过降低了星形胶质细胞过度活化和神经炎症,减轻纹状体WMI和神经元损伤,促进ICH大鼠运动功能恢复。  相似文献   
170.
Sarin poisoned rats display a hyper-cholinergic activity including hypersalivation, tremors, seizures and death. Here we studied the time and dose effects of midazolam treatment following nerve agent exposure. Rats were exposed to sarin (1.2 LD50, 108 μg/kg, im), and treated 1 min later with TMB4 and atropine (TA 7.5 and 5 mg/kg, im, respectively). Midazolam was injected either at 1 min (1 mg/kg, im), or 1 h later (1 or 5 mg/kg i.m.). Cortical seizures were monitored by electrocorticogram (ECoG). At 5 weeks, rats were assessed in a water maze task, and then their brains were extracted for biochemical analysis and histological evaluation. Results revealed a time and dose dependent effects of midazolam treatment. Rats treated with TA only displayed acute signs of sarin intoxication, 29% died within 24 h and the ECoG showed seizures for several hours. Animals that received midazolam within 1 min survived with only minor clinical signs but with no biochemical, behavioral, or histological sequel. Animals that lived to receive midazolam at 1 h (87%) survived and the effects of the delayed administration were dose dependent. Midazolam 5 mg/kg significantly counteracted the acute signs of intoxication and the impaired behavioral performance, attenuated some of the inflammatory response with no effect on morphological damage. Midazolam 1 mg/kg showed only a slight tendency to modulate the cognitive function. In addition, the delayed administration of both midazolam doses significantly attenuated ECoG compared to TA treatment only. These results suggest that following prolonged seizure, high dose midazolam is beneficial in counteracting adverse effects of sarin poisoning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号