首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   286703篇
  免费   25718篇
  国内免费   12393篇
耳鼻咽喉   2339篇
儿科学   3354篇
妇产科学   3416篇
基础医学   56406篇
口腔科学   6214篇
临床医学   20434篇
内科学   47008篇
皮肤病学   4500篇
神经病学   21877篇
特种医学   6003篇
外国民族医学   73篇
外科学   20931篇
综合类   40043篇
现状与发展   40篇
一般理论   8篇
预防医学   11732篇
眼科学   4559篇
药学   39875篇
  56篇
中国医学   10771篇
肿瘤学   25175篇
  2024年   508篇
  2023年   4431篇
  2022年   8844篇
  2021年   12659篇
  2020年   10123篇
  2019年   8708篇
  2018年   8606篇
  2017年   9057篇
  2016年   9660篇
  2015年   11141篇
  2014年   17195篇
  2013年   20043篇
  2012年   16868篇
  2011年   19552篇
  2010年   16131篇
  2009年   16085篇
  2008年   16052篇
  2007年   15145篇
  2006年   13659篇
  2005年   11865篇
  2004年   9912篇
  2003年   8580篇
  2002年   6710篇
  2001年   5560篇
  2000年   4728篇
  1999年   4192篇
  1998年   3926篇
  1997年   3645篇
  1996年   3272篇
  1995年   3094篇
  1994年   2780篇
  1993年   2423篇
  1992年   2017篇
  1991年   1914篇
  1990年   1598篇
  1989年   1437篇
  1988年   1310篇
  1987年   1145篇
  1986年   1023篇
  1985年   1568篇
  1984年   1456篇
  1983年   1032篇
  1982年   1141篇
  1981年   894篇
  1980年   759篇
  1979年   644篇
  1978年   430篇
  1977年   348篇
  1976年   326篇
  1975年   174篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
61.
COVID-19 is a novel coronavirus disease with a higher incidence of bilateral pneumonia and pleural effusion. The high pulmonary tropism and contagiousness of the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have stimulated new approaches to combat its widespread diffusion. In developing new pharmacological strategies, the chemical characteristic of volatility can add therapeutic value to the hypothetical drug candidate. Volatile molecules are characterized by a high vapor pressure and are consequently easily exhaled by the lungs after ingestion. This feature could be exploited from a pharmacological point of view, reaching the site of action in an uncommon way but allowing for drug delivery. In this way, a hypothetical molecule for COVID-19 should have a balance between its lung exhalation characteristics and both antiviral and anti-inflammatory pharmacological action. Here, the feasibility, advantages, and disadvantages of a therapy based on oral administration of possible volatile drugs for COVID-19 will be discussed. Both aerosolized antiviral therapy and oral intake of volatile molecules are briefly reviewed, and an evaluation of 1,8-cineole is provided in view of a possible clinical use and also for asymptomatic COVID-19.  相似文献   
62.
Many nanoparticles (NPs) have toxic effects on multiple cell lines. This toxicity is assumed to be related to their accumulation within cells. However, the process of internalization of NPs has not yet been fully characterized. In this study, the cellular uptake, accumulation, and localization of titanium dioxide nanoparticles (TiO2 NPs) in rat (C6) and human (U373) glial cells were analyzed using time-lapse microscopy (TLM) and transmission electron microscopy (TEM). Cytochalasin D (Cyt-D) was used to evaluate whether the internalization process depends of actin reorganization. To determine whether the NP uptake is mediated by phagocytosis or macropinocytosis, nitroblue tetrazolium (NBT) reduction was measured and the 5-(N-ethyl-N-isopropyl)-amiloride was used. Expression of proteins involved with endocytosis and exocytosis such as caveolin-1 (Cav-1) and cysteine string proteins (CSPs) was also determined using flow cytometry.TiO2 NPs were taken up by both cell types, were bound to cellular membranes and were internalized at very short times after exposure (C6, 30 min; U373, 2 h). During the uptake process, the formation of pseudopodia and intracellular vesicles was observed, indicating that this process was mediated by endocytosis. No specific localization of TiO2 NPs into particular organelles was found: in contrast, they were primarily localized into large vesicles in the cytoplasm. Internalization of TiO2 NPs was strongly inhibited by Cyt-D in both cells and by amiloride in U373 cells; besides, the observed endocytosis was not associated with NBT reduction in either cell type, indicating that macropinocytosis is the main process of internalization in U373 cells. In addition, increases in the expression of Cav-1 protein and CSPs were observed.In conclusion, glial cells are able to internalize TiO2 NPs by a constitutive endocytic mechanism which may be associated with their strong cytotoxic effect in these cells; therefore, TiO2 NPs internalization and their accumulation in brain cells could be dangerous to human health.  相似文献   
63.
AimsWe previously showed that the protective effects of endothelial progenitor cells (EPCs)‐released exosomes (EPC‐EXs) on endothelium in diabetes. However, whether EPC‐EXs are protective in diabetic ischemic stroke is unknown. Here, we investigated the effects of EPC‐EXs on diabetic stroke mice and tested whether miR‐126 enriched EPC‐EXs (EPC‐EXsmiR126) have enhanced efficacy.MethodsThe db/db mice subjected to ischemic stroke were intravenously administrated with EPC‐EXs 2 hours after ischemic stroke. The infarct volume, cerebral microvascular density (MVD), cerebral blood flow (CBF), neurological function, angiogenesis and neurogenesis, and levels of cleaved caspase‐3, miR‐126, and VEGFR2 were measured on day 2 and 14.ResultsWe found that (a) injected EPC‐EXs merged with brain endothelial cells, neurons, astrocytes, and microglia in the peri‐infarct area; (b) EPC‐EXsmiR126 were more effective than EPC‐EXs in decreasing infarct size and increasing CBF and MVD, and in promoting angiogenesis and neurogenesis as well as neurological functional recovery; (c) These effects were accompanied with downregulated cleaved caspase‐3 on day 2 and vascular endothelial growth factor receptor 2 (VEGFR2) upregulation till day 14.ConclusionOur results indicate that enrichment of miR126 enhanced the therapeutic efficacy of EPC‐EXs on diabetic ischemic stroke by attenuating acute injury and promoting neurological function recovery.  相似文献   
64.
65.
目的探讨维生素D(VitD)联合鱼油对糖尿病前期(PDM)患者糖脂代谢、胰岛β细胞功能的影响。 方法选取PDM患者132例,随机均分为联合组(VitD+鱼油)、VitD组(VitD)和对照组(不干预)。比较各组糖脂代谢、胰岛β细胞功能、炎症反应、血管内皮功能等指标。 结果与干预前比较,干预后联合组甘油三酯降低,白细胞介素-10增高(P<0.05),联合组和VitD组低密度脂蛋白胆固醇、肿瘤坏死因子-α、胰岛素抵抗指数、前列腺素E2、瘦素、抵抗素降低(P<0.05),空腹胰岛素、胰岛β细胞功能指数、脂联素增高(P<0.05),且联合组改善更为明显(P<0.05)。 结论维生素D联合鱼油治疗PDM患者可改善其脂代谢和胰岛功能相关指标,具有一定临床应用价值。  相似文献   
66.
《Vaccine》2022,40(11):1594-1605
In addition to providing pathogen-specific immunity, vaccines can also confer nonspecific effects (NSEs) on mortality and morbidity unrelated to the targeted disease. Immunisation with live vaccines, such as the BCG vaccine, has generally been associated with significantly reduced all-cause infant mortality. In contrast, some inactivated vaccines, such as the diphtheria, tetanus, whole-cell pertussis (DTPw) vaccine, have been controversially associated with increased all-cause mortality especially in female infants in high-mortality settings. The NSEs associated with BCG have been attributed, in part, to the induction of trained immunity, an epigenetic and metabolic reprograming of innate immune cells, increasing their responsiveness to subsequent microbial encounters. Whether non-live vaccines such as DTPw induce trained immunity is currently poorly understood. Here, we report that immunisation of mice with DTPw induced a unique program of trained immunity in comparison to BCG immunised mice. Altered monocyte and DC cytokine responses were evident in DTPw immunised mice even months after vaccination. Furthermore, splenic cDCs from DTPw immunised mice had altered chromatin accessibility at loci involved in immunity and metabolism, suggesting that these changes were epigenetically mediated. Interestingly, changing the order in which the BCG and DTPw vaccines were co-administered to mice altered subsequent trained immune responses. Given these differences in trained immunity, we also assessed whether administration of these vaccines altered susceptibility to sepsis in two different mouse models. Immunisation with either BCG or a DTPw-containing vaccine prior to the induction of sepsis did not significantly alter survival. Further studies are now needed to more fully investigate the potential consequences of DTPw induced trained immunity in different contexts and to assess whether other non-live vaccines also induce similar changes.  相似文献   
67.
Pneumonia caused by coronavirus, which originated in Wuhan, China, in late 2019, has been spread around the world already becoming a pandemic. Unfortunately, there is not yet a specific vaccine or effective antiviral drug for treating COVID-19. Many of these patients deteriorate rapidly and require intubation and are mechanically ventilated, which is causing the collapse of the health system in many countries due to lack of ventilators and intensive care beds.In this document we review two simple adjuvant therapies to administer, without side effects, and low cost that could be useful for the treatment of acute severe coronavirus infection associated with acute respiratory syndrome (SARS-CoV-2). Vitamin C, a potent antioxidant, has emerged as a relevant therapy due to its potential benefits when administered intravenous. The potential effect of vitamin C in reducing inflammation in the lungs could play a key role in lung injury caused by coronavirus infection. Another potential effective therapy is ozone: it has been extensively studied and used for many years and its effectiveness has been demonstrated so far in multiples studies. Nevertheless, our goal is not to make an exhaustive review of these therapies but spread the beneficial effects themselves.Obviously clinical trials are necessaries, but due to the potential benefit of these two therapies we highly recommended to add to the therapeutic arsenal.  相似文献   
68.
69.
We reported two cases with community-acquired pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) who returned from Wuhan, China in January, 2020. The reported cases highlight non-specific clinical presentations of 2019 novel coronavirus disease (COVID-19) as well as the importance of rapid laboratory-based diagnosis.  相似文献   
70.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged in Chinese people in December 2019 and has currently spread worldwide causing the COVID-19 pandemic with more than 150,000 deaths. In order for a SARS-CoV like virus circulating in wild life for a very long time to infect the index case-patient, a number of conditions must be met, foremost among which is the encounter with humans and the presence in homo sapiens of a cellular receptor allowing the virus to bind. Recently it was shown that the SARS-CoV-2 spike protein, binds to the human angiotensin I converting enzyme 2 (ACE2). This molecule is a peptidase expressed at the surface of lung epithelial cells and other tissues, that regulates the renin-angiotensin-aldosterone system. Humans are not equal with respect to the expression levels of the cellular ACE2. Moreover, ACE2 polymorphisms were recently described in human populations. Here we review the most recent evidence that ACE2 expression and/or polymorphism could influence both the susceptibility of people to SARS-CoV-2 infection and the outcome of the COVID-19 disease. Further exploration of the relationship between the virus, the peptidase function of ACE2 and the levels of angiotensin II in SARS-CoV-2 infected patients should help to better understand the pathophysiology of the disease and the multi-organ failures observed in severe COVID-19 cases, particularly heart failure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号