首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20538篇
  免费   1626篇
  国内免费   444篇
耳鼻咽喉   125篇
儿科学   292篇
妇产科学   122篇
基础医学   2664篇
口腔科学   447篇
临床医学   3124篇
内科学   1675篇
皮肤病学   80篇
神经病学   3996篇
特种医学   774篇
外科学   1037篇
综合类   3128篇
现状与发展   1篇
一般理论   16篇
预防医学   2003篇
眼科学   383篇
药学   1551篇
  143篇
中国医学   642篇
肿瘤学   405篇
  2025年   42篇
  2024年   848篇
  2023年   1143篇
  2022年   1448篇
  2021年   1616篇
  2020年   1386篇
  2019年   972篇
  2018年   711篇
  2017年   706篇
  2016年   600篇
  2015年   581篇
  2014年   1139篇
  2013年   1400篇
  2012年   952篇
  2011年   1101篇
  2010年   775篇
  2009年   784篇
  2008年   852篇
  2007年   772篇
  2006年   727篇
  2005年   556篇
  2004年   459篇
  2003年   403篇
  2002年   342篇
  2001年   268篇
  2000年   252篇
  1999年   182篇
  1998年   200篇
  1997年   192篇
  1996年   123篇
  1995年   96篇
  1994年   82篇
  1993年   88篇
  1992年   63篇
  1991年   56篇
  1990年   54篇
  1989年   33篇
  1988年   56篇
  1987年   33篇
  1986年   31篇
  1985年   54篇
  1984年   55篇
  1983年   37篇
  1982年   42篇
  1981年   34篇
  1980年   36篇
  1979年   32篇
  1977年   36篇
  1976年   31篇
  1974年   31篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
941.
帕金森病是一种常见的神经系统退行性疾病,在出现临床症状时已经不可逆,所以早期诊断显得尤为重要。随着人工智能技术的发展,机器学习与深度学习已广泛用于医学数据分析和神经影像自动化诊断研究。本文将综述基于多模态影像的机器学习与深度学习在帕金森病早期诊断、分类研究以及功能预测中的应用情况,并对其局限性作出阐述,以及对未来的发展趋势进行展望。  相似文献   
942.
龙洁  王培涵 《西部医学》2023,(11):1561-1565
基于深度学习的人工智能技术已被广泛应用于计算机视觉领域,在医学图像处理方面,基于卷积的深度学习神经网络具备较好的智能学习和目标区域关键信息分析处理能力,在各类医学影像的图像分割实践中表现出近似于甚至高于专业人员的智能水平。腮腺是唾液腺肿瘤好发的腺体,腮腺肿瘤是口腔颌面外科的常见病和多发病,对腮腺肿瘤的精准诊疗仍存在临床挑战。本研究围绕深度学习技术在腮腺肿瘤智能诊疗的应用和前景作一述评,希冀推动口腔智慧医疗的进一步深化及发展。  相似文献   
943.
    
《Ophthalmology》2023,130(8):837-843
  相似文献   
944.
945.
近年来,深度学习算法已成为计算机科学研究的重要前沿领域,并在图像识别、语音识别及自然语言处理等领域得到广泛应用,但其与医疗领域的融合起步较晚。将深度学习算法用于眼底照相、光学相干断层扫描及视野检查等眼部常规检查中可有效地评估青光眼、白内障、年龄相关性黄斑变性及糖尿病性视网膜病变等常见致盲性眼病的风险。目前,该算法在眼科常见疾病筛查与诊断中的实用性已得到充分证明。本文中笔者从青光眼筛查与诊断的角度就该算法在其中应用的研究进展进行综述。  相似文献   
946.
    
BACKGROUND Pain after transcatheter arterial chemoembolisation(TACE) can seriously affect the prognosis of patients and the insertion of additional medical resources.AIM To develop an early warning model for predicting pain after TACE to enable the implementation of preventive analgesic measures.METHODS We retrospectively collected the clinical data of 857 patients(from January 2016 to January 2020) and prospectively enrolled 368 patients(from February 2020 to October 2022; as verification cohor...  相似文献   
947.
948.
    

Background

Ophthalmic clinic non-attendance in New Zealand is associated with poorer health outcomes, marked inequities and costs NZD$30 million per annum. Initiatives to improve attendance typically involve expensive and ineffective brute-force strategies. The aim was to develop machine learning models to accurately predict ophthalmic clinic non-attendance.

Methods

This multicentre, retrospective observational study developed and validated predictive models of clinic non-attendance. Attendance data for 3.1 million appointments from all New Zealand government-funded ophthalmology clinics from 2009 to 2018 were aggregated for analysis. Repeated ten-fold cross validation was used to train and optimise XGBoost and logistic regression models on several demographic and clinic-related variables. Models developed using the entire training set were compared with those restricted to regional subsets of the data.

Results

In the testing data set from 2019, there were 407 574 appointments (median [range] age, 66 [0–105] years; 210 365 [51.6%] female) with a non-attendance rate of 5.7% (n = 23 309 missed appointments), XGBoost models trained on each region's data achieved the highest mean AUROC of 0.764 (SD 0.058) and mean AUPRC of 0.157 (SD 0.072). XGBoost performed better than logistic regression (mean AUROC = 0.756, p = 0.002). Training individual XGBoost models for each region led to better performance than training a single model on the complete nationwide dataset (mean AUROC = 0.754, p = 0.04).

Conclusion

Machine learning algorithms can predict ophthalmic clinic non-attendance with relatively basic demographic and clinic data. These findings suggest further research examining implementation of such algorithms in scheduling systems or public health interventions may be useful.  相似文献   
949.
Optical coherence tomography (OCT) is a non-invasive optical imaging modality, which provides rapid, high-resolution and cross-sectional morphology of macular area and optic nerve head for diagnosis and managing of different eye diseases. However, interpreting OCT images requires experts in both OCT images and eye diseases since many factors such as artefacts and concomitant diseases can affect the accuracy of quantitative measurements made by post-processing algorithms. Currently, there is a growing interest in applying deep learning (DL) methods to analyse OCT images automatically. This review summarises the trends in DL-based OCT image analysis in ophthalmology, discusses the current gaps, and provides potential research directions. DL in OCT analysis shows promising performance in several tasks: (1) layers and features segmentation and quantification; (2) disease classification; (3) disease progression and prognosis; and (4) referral triage level prediction. Different studies and trends in the development of DL-based OCT image analysis are described and the following challenges are identified and described: (1) public OCT data are scarce and scattered; (2) models show performance discrepancies in real-world settings; (3) models lack of transparency; (4) there is a lack of societal acceptance and regulatory standards; and (5) OCT is still not widely available in underprivileged areas. More work is needed to tackle the challenges and gaps, before DL is further applied in OCT image analysis for clinical use.  相似文献   
950.
         下载免费PDF全文
AIM: To evaluate the clinical application value of the artificial intelligence assisted pathologic myopia (PM-AI) diagnosis model based on deep learning.METHODS: A total of 1156 readable color fundus photographs were collected and annotated based on the diagnostic criteria of Meta-pathologic myopia (PM) (2015). The PM-AI system and four eye doctors (retinal specialists 1 and 2, and ophthalmologists 1 and 2) independently evaluated the color fundus photographs to determine whether they were indicative of PM or not and the presence of myopic choroidal neovascularization (mCNV). The performance of identification for PM and mCNV by the PM-AI system and the eye doctors was compared and evaluated via the relevant statistical analysis.RESULTS: For PM identification, the sensitivity of the PM-AI system was 98.17%, which was comparable to specialist 1 (P=0.307), but was higher than specialist 2 and ophthalmologists 1 and 2 (P<0.001). The specificity of the PM-AI system was 93.06%, which was lower than specialists 1 and 2, but was higher than ophthalmologists 1 and 2. The PM-AI system showed the Kappa value of 0.904, while the Kappa values of specialists 1, 2 and ophthalmologists 1, 2 were 0.968, 0.916, 0.772 and 0.730, respectively. For mCNV identification, the AI system showed the sensitivity of 84.06%, which was comparable to specialists 1, 2 and ophthalmologist 2 (P>0.05), and was higher than ophthalmologist 1. The specificity of the PM-AI system was 95.31%, which was lower than specialists 1 and 2, but higher than ophthalmologists 1 and 2. The PM-AI system gave the Kappa value of 0.624, while the Kappa values of specialists 1, 2 and ophthalmologists 1 and 2 were 0.864, 0.732, 0.304 and 0.238, respectively.CONCLUSION: In comparison to the senior ophthalmologists, the PM-AI system based on deep learning exhibits excellent performance in PM and mCNV identification. The effectiveness of PM-AI system is an auxiliary diagnosis tool for clinical screening of PM and mCNV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号