首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16952篇
  免费   1592篇
  国内免费   588篇
耳鼻咽喉   33篇
儿科学   313篇
妇产科学   166篇
基础医学   1860篇
口腔科学   68篇
临床医学   3619篇
内科学   3590篇
皮肤病学   48篇
神经病学   969篇
特种医学   1668篇
外科学   1787篇
综合类   1701篇
现状与发展   2篇
预防医学   1372篇
眼科学   49篇
药学   926篇
  15篇
中国医学   575篇
肿瘤学   371篇
  2024年   66篇
  2023年   336篇
  2022年   649篇
  2021年   854篇
  2020年   851篇
  2019年   735篇
  2018年   701篇
  2017年   720篇
  2016年   650篇
  2015年   633篇
  2014年   1002篇
  2013年   1342篇
  2012年   885篇
  2011年   890篇
  2010年   792篇
  2009年   663篇
  2008年   742篇
  2007年   694篇
  2006年   631篇
  2005年   479篇
  2004年   439篇
  2003年   420篇
  2002年   348篇
  2001年   367篇
  2000年   301篇
  1999年   253篇
  1998年   235篇
  1997年   208篇
  1996年   228篇
  1995年   200篇
  1994年   149篇
  1993年   183篇
  1992年   190篇
  1991年   147篇
  1990年   128篇
  1989年   117篇
  1988年   132篇
  1987年   129篇
  1986年   100篇
  1985年   99篇
  1984年   72篇
  1983年   51篇
  1982年   67篇
  1981年   51篇
  1980年   64篇
  1979年   36篇
  1978年   23篇
  1977年   17篇
  1976年   21篇
  1975年   16篇
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
91.
We tested the hypothesis that pharmacological reduction of the increase in cardiac output during dynamic exercise with a large muscle mass would influence the cerebral blood velocity/perfusion. We studied the relationship between changes in cerebral blood velocity (transcranial Doppler), rectus femoris blood oxygenation (near-infrared spectroscopy) and systemic blood flow (cardiac output from model flow analysis of the arterial pressure wave) as induced by dynamic exercise of large (cycling) vs. small muscle groups (rhythmic handgrip) before and after cardioselective β1 adrenergic blockade (0.15 mg kg?1 metoprolol i.v.). During rhythmic handgrip, the increments in systemic haemodynamic variables as in middle cerebral artery mean blood velocity were not influenced significantly by metoprolol. In contrast, during cycling (e.g. 113 W), metoprolol reduced the increase in cardiac output (222 ± 13 vs. 260 ± 16%), heart rate (114 ± 3 vs. 135 ± 7 beats min?1) and mean arterial pressure (103 ± 3 vs.112 ± 4 mmHg), and the increase in cerebral artery mean blood velocity also became lower (from 59 ± 3 to 66 ± 3 vs. 60 ± 2 to 72 ± 3 cm s?1; P < 0.05). Likewise, during cycling with metoprolol, oxyhaemoglobin in the rectus femoris muscle became reduced (compared to rest; ?4.8 ± 1.8 vs. 1.2 ± 1.7 μmol L?1, P < 0.05). Neither during rhythmic handgrip nor during cycling was the arterial carbon dioxide tension affected significantly by metoprolol. The results suggest that as for the muscle blood flow, the cerebral circulation is also affected by a reduced cardiac output during exercise with a large muscle mass.  相似文献   
92.
用自行设计的踏车多指标心血管功能评价系统(E系统),对正常人,冠心病患者、心肌梗塞患者三组进行踏车运动前后Q—Tc变化及运动前后心血管功能评定。对静息时或运动后Q—Tc延长诊断冠心病价值及运动前后心血管功能变化规律的敏感性、特殊性分别进行对照和探讨。  相似文献   
93.
The effects of resistance exercise on the nocturnal responses of cortisol (CO), testosterone (TEST), human growth hormone (hGH), and thyroid hormones (T3, T4) were examined in eight trained weight lifters. Each subject completed two trials using a counterbalanced design: a control, no exercise trial (CON) and a heavy resistance exercise session of three sets of six exercises to exhaustion (RE). The exercise session took place between 1900 and 2000 hours. Blood was sampled prior to and at 20-min intervals after RE. For both trials blood was sampled at hourly intervals from 2100 hours until 0700 hours. The hGH and CO concentrations were increased up to 40-min post-exercise (P < 0.05), but returned to resting levels 1 h post-exercise. Nocturnal hGH concentration was not affected by RE (P > 0.26) and peaked at 0200 hours and declined until 0700 hours. Similarly, the CO responses were similar between the trails (P > 0.14). This CO concentrations declined from 2200 hours until 0100 hours, then increased steadily until 0700 hours. The TEST concentrations during both trials rose steadily from 2200 hours until 0700 hours; however, the rise in TEST from 0500–0700 hours during RE was greater than during the CON trails (P = 0.059). The T3 concentrations were unchanged by exercise and were similar at all times between trails. The T4 concentrations were elevated for 20 min after RE; however nocturnal T4 concentrations were lower after RE than during CON. These results would suggest that bGH and CO may have limited nocturnal reactivity to resistance exercise. However, the nocturnal alterations of TEST and T4 after resistance exercise, although small, may have implications for muscle anabolism.  相似文献   
94.
Anecdotal observations suggest that the reduction in peak lactate accumulation in blood ([La]b peak) after exhausting exercise, in chronic hypoxia vs. normoxia, may be related to the duration of the exercise protocol, being less pronounced after short supramaximal exercise than after incremental exercise (IE) lasting several minutes. To test this hypothesis, six healthy male Caucasians (age 36.8 ± 7.3, ± SD) underwent three exercise protocols on a cycle ergometer, at sea level (SL) and after 21 ± 10 days at 5050 m altitude (ALT): (1) 10 s, (2) 30 s ‘all out’ exercise and (3) IE leading to exhaustion in ~20–25 min. ‘Average’ power output () was calculated for 10 or 30 s ‘all out’; maximal power output (Pmax) was determined for IE. Lactate concentration in arterialized capillary blood ([La]b) was measured at rest and at different times during recovery; the highest [La]b during recovery was taken as [La]b peak. No significant differences in were observed between SL and ALT, for either 10 or 30 s ‘all out’ exercise; Pmax during IE was significantly lower at ALT than at SL. [La]b peak after 10 s ‘all out’ was unaffected by chronic hypoxia (7.0 ± 0.9 at ALT vs. 6.3 ± 1.8 mmol L–1 at SL). After 30 s ‘all out’ the [La]b peak decrease, at ALT (10.6 ± 0.6 mmol L–1) vs. SL (12.9 ± 1.4 mmol L–1), was only ~50% of that observed for IE (6.7 ± 1.6 mmol L–1 vs. 11.3 ± 2.8 mmol L–1). Muscle power output and blood lactate accumulation during short supramaximal exercise are substantially unaffected by chronic hypoxia.  相似文献   
95.
Radiocardiography was used to measure cardiac output, stroke volume and left ventricular ejection fraction at rest and during muscular exercise in relation with age in 148 healthy subjects (age range: 6–78 years). A clear dependence of these parameters on age was found. The mean annual decrease at rest was 22±9 ml/min/m2 for cardiac index, 0.22±0.04 ml/m2 for stroke index and 0.0017±0.0003 for left ventricular ejection fraction. Male subjects had significantly (p < 0.001) greater cardiac (9±4%) and stroke indices (11±23%) than females. During submaximal exercise cardiac index increased from 3.5±0.7 l/min/m' to 8.1±1.6 l/min/m2 in male subjects (mean age: 32 years) and from 3.1±0.4 l/min/m2 to 7.2±1.2 l/min/ m2 in female subjects (mean age: 29 years). The corresponding increases in stroke index and left ventricular ejection fraction were: from 52±7 ml/m2 to 62±9 ml/m2. from 46±7 ml/m2 to 51±9 ml/m2 and from 0.66±0.08 to 0.79±0.05 and from 0.64±0.10 to 0.72±0.10. In subjects who were 60 years and older the increases of these parameters during exercise were considerably smaller.  相似文献   
96.
Summary The mechanical power (Wtot, W·kg–1) developed during ten revolutions of all-out periods of cycle ergometer exercise (4–9 s) was measured every 5–6 min in six subjects from rest or from a baseline of constant aerobic exercise [50%–80% of maximal oxygen uptake (VO2max)] of 20–40 min duration. The oxygen uptake [VO2 (W·kg–1, 1 ml O2 = 20.9 J)] and venous blood lactate concentration ([la]b, mM) were also measured every 15 s and 2 min, respectively. During the first all-out period, Wtot decreased linearly with the intensity of the priming exercise (Wtot = 11.9–0.25·VO2). After the first all-out period (i greater than 5–6 min), and if the exercise intensity was less than 60% VO2max, Wtot, VO2 and [la]b remained constant until the end of the exercise. For exercise intensities greater than 60% VO2max, VO2 and [la]b showed continuous upward drifts and Wtot continued decreasing. Under these conditions, the rate of decrease of Wtot was linearly related to the rate of increase of V [(d Wtot/dt) (W·kg–1·s–1) = 5.0·10–5 –0.20·(d VO2/dt) (W·kg–1·s–1)] and this was linearly related to the rate of increase of [la]b [(d VO2/dt) (W·kg–1·s–1) = 2.310–4 + 5.910–5·(d [la]b/dt) (mM·s–1)]. These findings would suggest that the decrease of Wtot during the first all-out period was due to the decay of phosphocreatine concentration in the exercising muscles occurring at the onset of exercise and the slow drifts of VO2 (upwards) and of Wtot (downwards) during intense exercise at constant Wtot could be attributed to the continuous accumulation of lactate in the blood (and in the working muscles).  相似文献   
97.
 The purpose of this study was to investigate the time course of skeletal muscle adaptations resulting from high-intensity, upper and lower body dynamic resistance training (WT). A group of 17 men and 20 women were recruited for WT, and 6 men and 7 women served as a control group. The WT group performed six dynamic resistance exercises to fatigue using 8–12 repetition maximum (RM). The subjects trained 3 days a week for 12 weeks. One-RM knee extension (KE) and chest press (CP) exercises were measured at baseline and at weeks 2, 4, 6, 8, and 12 for the WT group. Muscle thickness (MTH) was measured by ultrasound at eight anatomical sites. One-RM CP and KE strength had increased significantly at week 4 for the female WT group. For the men in the WT group, 1 RM had increased significantly at week 2 for KE and at week 6 for CP. The mean relative increases in KE and CP strength were 19% and 19% for the men and 19% and 27% for the women, respectively, after 12 weeks of WT. Resistance training elicited a significant increase in MTH of the chest and triceps muscles at week 6 in both sexes. There were non-significant trends for increases in quadriceps MTH for the WT groups. The relative increases in upper and lower body MTH were 12%–21% and 7%–9% in the men and 10%–31% and 7%–8% in the women respectively, after 12 weeks of WT. These results would suggest that increases in MTH in the upper body are greater and occur earlier compared to the lower extremity, during the first 12 weeks of a total body WT programme. The time-course and proportions of the increase in strength and MTH were similar for both the men and the women. Accepted: 6 September 1999  相似文献   
98.
The purposes of the present study were to examine the response of the skin blood flux (SBF) in the paralyzed lower limbs of persons with spinal cord injury (PSCI) and to clarify the relationship between the SBF and core temperature during prolonged arm exercise. Eight male PSCI with lesions from T6 to L5 and six male control subjects (CS) participated in this study. The subjects rested for 60 min and then performed arm-cranking exercise at 20 W for 30 min at 25 °C. The tympanic membrane temperature (T ty) and SBF in the anterior thigh (SBFT) and in the posterior calf (SBFC) were continuously measured throughout the experiment. The SBFC did not change in either PSCI or CS during the experiment. The SBFT in four PSCI with high lesions (T6 to T12), remained unchanged during exercise. The SBFT in the other four PSCI with low lesions (T12 to L5, SBFT+) began to elevate markedly when the T t, exceeded a threshold temperature of 36.69 °C. The pattern of increase of SBFT in SBFT+ was similar to that in CS, although onset of the increase in SBFT was delayed and the peak of SBFT during exercise was significantly lower in comparison with the CS. We consider that these differences between the SBFT+ and CS were largely attributable to the lowerT ty in the former group, which took a prolonged time to reach the threshold of 36.69 °C.  相似文献   
99.
Cerebral blood volume flow and flow velocity have been reported to increase during dynamic exercise, but whether the two increase in parallel and whether both increases occur as functions of exercise intensity remain unsettled. In this study, blood flow velocity in the common carotid artery was measured using the Doppler ultrasound method in eight healthy male students during graded treadmill exercise. The exercise consisted of stepwise progressive increases and decreases in exercise intensity. The peak intensity corresponded to approximately 85% of maximal oxygen consumption. During this exercise, the heart rate (f c), mean blood pressure (BP) in the brachial artery and mean blood flow velocity (cc) in the common carotid artery increased as functions of exercise intensity. At the peak exercise intensity, (f c), BP and cc increased by 134.5%, 20.5% and 51.8% over the control levels before exercise (P < 0.01), respectively. The resistance index (RI) and pulsatility index (PI) were determined from the velocity profile and were expected to reflect the distal cerebral blood flow resistance. The RI and PI increased during the graded exercise, but tended to decrease at the highest levels of exercise intensity. As cc increased with increases in exercise intensity it would be expected that cerebral blood flow would also increase at these higher intensities. It is also suggested that blood flow velocity in the cerebral artery does not proportionately reflect the cerebral blood flow during dynamic exercise, since the cerebral blood flow resistance changes.  相似文献   
100.
Summary The purpose of this study was to determine the effect of caffeine ingestion on physical performance after prolonged endurance exercise. Twenty three trained male volunteers participated in a 40-km march and were divided into two groups, matched for caffeine clearance rate and aerobic capacity. The experimental group ingested, prior to the march, a caffeinated drink at a dose of 5 mg·kg−1 body mass and at the 3rd and 5th h of marching an additional drink at a dose of 2.5 mg·kg−1 body mass. The control group ingested a drink of equal volume at the same times. Upon termination of the march each subject performed a cycle ergometer test at an intensity of 90% maximal oxygen consumption. Time to exhaustion and rate of perceived exertion (RPE) were recorded. Blood samples were drawn predrink, at the 3rd and 5th h of marching and immediately after the cycle ergometer test, and were analysed for caffeine, free fatty acids (FFA), lactate and glucose levels. Plasma FFA levels increased during the march (p<0.05), with no significant difference between groups. Lactate levels increased in the experimental group (p<0.05), with no significant change in the control group. Glucose levels did not change significantly in either group. After the cycle ergometer test, lactate levels were significantly higher in the experimental, as compared to the control group (3.77±0.33 vs 2.52±0.35 mmol·l−1, respectively). There was no significant difference between treatments in the time to exhaustion on the cycle ergometer, but RPE was different (p<0.05). Under the conditions of this study, the results do not indicate caffeine ingestion as an ergogenic aid which will postpone exhaustion following prolonged endurance exercise. This work was presented, in part, at the Canadian Association of Sports Sciences Annual Meeting, October 1987, Lake Louise, Alberta, Canada  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号