全文获取类型
收费全文 | 668篇 |
免费 | 74篇 |
国内免费 | 27篇 |
专业分类
耳鼻咽喉 | 1篇 |
基础医学 | 259篇 |
口腔科学 | 13篇 |
临床医学 | 59篇 |
内科学 | 57篇 |
皮肤病学 | 7篇 |
神经病学 | 16篇 |
特种医学 | 15篇 |
外科学 | 11篇 |
综合类 | 42篇 |
预防医学 | 1篇 |
眼科学 | 8篇 |
药学 | 237篇 |
中国医学 | 36篇 |
肿瘤学 | 7篇 |
出版年
2024年 | 1篇 |
2023年 | 23篇 |
2022年 | 27篇 |
2021年 | 43篇 |
2020年 | 29篇 |
2019年 | 41篇 |
2018年 | 37篇 |
2017年 | 42篇 |
2016年 | 42篇 |
2015年 | 30篇 |
2014年 | 61篇 |
2013年 | 112篇 |
2012年 | 34篇 |
2011年 | 30篇 |
2010年 | 23篇 |
2009年 | 26篇 |
2008年 | 28篇 |
2007年 | 15篇 |
2006年 | 12篇 |
2005年 | 18篇 |
2004年 | 13篇 |
2003年 | 14篇 |
2002年 | 8篇 |
2001年 | 7篇 |
1999年 | 4篇 |
1998年 | 1篇 |
1997年 | 5篇 |
1996年 | 4篇 |
1995年 | 6篇 |
1994年 | 2篇 |
1993年 | 4篇 |
1992年 | 4篇 |
1991年 | 6篇 |
1990年 | 2篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1986年 | 3篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1980年 | 3篇 |
1976年 | 1篇 |
排序方式: 共有769条查询结果,搜索用时 15 毫秒
91.
顺铂温敏纳米颗粒的制备及其评价 总被引:1,自引:0,他引:1
目的构建顺铂温敏纳米颗粒,表征其相关性质及不同温度下对肿瘤细胞生长抑制率。方法采用自由基共聚及开环聚合法合成聚N异丙基丙烯酰胺丙烯酰胺D,L丙交酯,在水溶液中自发形成胶束结构包裹顺铂,测定其分子量分布、粒径、包封率、载药量、温敏特性及肿瘤细胞生长抑制率。结果空白载体粒径为(83.3±4.3)nm,包药后载体粒径(133.4±17.8)nm,比包药前增加了大约50nm。载药量为3.8%,包封率为35%。载药颗粒在单纯化疗时细胞抑制作用较小,加热后抑制作用明显增加(P<0.01),与游离药物相近(P>0.05)。结论顺铂温敏纳米颗粒具有较好的温度控释特性,为热靶向治疗提供了良好的载体。 相似文献
92.
Meniscus ECM‐functionalised hydrogels containing infrapatellar fat pad‐derived stem cells for bioprinting of regionally defined meniscal tissue 下载免费PDF全文
S. Romanazzo S. Vedicherla C. Moran D.J. Kelly 《Journal of tissue engineering and regenerative medicine》2018,12(3):e1826-e1835
Injuries to the meniscus of the knee commonly lead to osteoarthritis. Current therapies for meniscus regeneration, including meniscectomies and scaffold implantation, fail to achieve complete functional regeneration of the tissue. This has led to increased interest in cell and gene therapies and tissue engineering approaches to meniscus regeneration. The implantation of a biomimetic implant, incorporating cells, growth factors, and extracellular matrix (ECM)‐derived proteins, represents a promising approach to functional meniscus regeneration. The objective of this study was to develop a range of ECM‐functionalised bioinks suitable for 3D bioprinting of meniscal tissue. To this end, alginate hydrogels were functionalised with ECM derived from the inner and outer regions of the meniscus and loaded with infrapatellar fat pad‐derived stem cells. In the absence of exogenously supplied growth factors, inner meniscus ECM promoted chondrogenesis of fat pad‐derived stem cells, whereas outer meniscus ECM promoted a more elongated cell morphology and the development of a more fibroblastic phenotype. With exogenous growth factors supplementation, a more fibrogenic phenotype was observed in outer ECM‐functionalised hydrogels supplemented with connective tissue growth factor, whereas inner ECM‐functionalised hydrogels supplemented with TGFβ3 supported the highest levels of Sox‐9 and type II collagen gene expression and sulfated glycosaminoglycans (sGAG) deposition. The final phase of the study demonstrated the printability of these ECM‐functionalised hydrogels, demonstrating that their codeposition with polycaprolactone microfibres dramatically improved the mechanical properties of the 3D bioprinted constructs with no noticeable loss in cell viability. These bioprinted constructs represent an exciting new approach to tissue engineering of functional meniscal grafts. 相似文献
93.
Concentration gradients of soluble and matrix-bound guidance cues in the extracellular matrix direct cell growth in native tissues and are of great interest for design of biomedical scaffolds and on implant surfaces. The focus of this review is to demonstrate the importance of gradient guidance for cells as it would be desirable to direct cell growth onto/into biomedical devices. Many studies have been described that illustrate the production and characterization of surface gradients, but three dimensional (3D)-gradients that direct cellular behavior are not well investigated. Hydrogels are considered as synthetic replacements for native extracellular matrices as they share key functions such as 2D- or 3D-solid support, fibrous structure, gas- and nutrition permeability and allow storage and release of biologically active molecules. Therefore this review focuses on current studies that try to implement soluble or covalently-attached gradients of growth factors, cytokines or adhesion sequences into 3D-hydrogel matrices in order to control cell growth, orientation and migration towards a target. Such gradient architectures are especially desirable for wound healing purposes, where defined cell populations need to be recruited from the blood stream and out of the adjacent tissue, in critical bone defects, for vascular implants or neuronal guidance structures where defined cell populations should be guided by appropriate signals to reach their proper positions or target tissues in order to accomplish functional repair. 相似文献
94.
Beata Kaczmarek-Szczepaska Olha Mazur Marta Michalska-Sionkowska Krzysztof ukowicz Anna Maria Osyczka 《Materials》2021,14(9)
In this study, hydrogels based on chitosan cross-linked by glyoxal have been investigated for potential medical applications. Hydrogels were loaded with tannic acid at different concentrations. The thermal stability and the polyphenol-releasing rate were determined. For a preliminary assessment of the clinical usefulness of the hydrogels, they were examined for blood compatibility and in the culture of human dental pulp cells (hDPC). The results showed that after immersion in a polyphenol solution, chitosan/glyoxal hydrogels remain nonhemolytic for erythrocytes, and we also did not observe the cytotoxic effect of hydrogels immersed in tannic acid (TA) solutions with different concentration. Tannic acid was successfully released from hydrogels, and its addition improved material thermal stability. Thus, the current findings open the possibility to consider such hydrogels in clinics. 相似文献
95.
Collagen is a key component for devices envisaging biomedical applications; however, current increasing requirements impose the use of multicomponent materials. Here, a series of hybrid collagen-based 3D materials, comprising also poly(ε-caprolactone) (PCL) and different concentrations of hyaluronic acid (HA)—in dense, porous or macroporous form—were characterized in comparison with a commercially available collagen sponge, used as control. Properties, such as water uptake ability, water vapour sorption, drug loading and delivery, were investigated in correlation with the material structural characteristics (composition and morphology). Methylene blue (MB) and curcumin (CU) were used as model drugs. For spongeous matrices, it was evidenced that, in contrast to the control sample, the multicomponent materials favor improved sustained release, the kinetics being controlled by composition and cross-linking degree. The other characteristics were within an acceptable range for the intended purpose of use. The obtained results demonstrate that such materials are promising for future biomedical applications (wound dressings and lab models). 相似文献
96.
Zhen-Ning Zhang Beatriz C. Freitas Hao Qian Jacques Lux Allan Acab Cleber A. Trujillo Roberto H. Herai Viet Anh Nguyen Huu Jessica H. Wen Shivanjali Joshi-Barr Jerome V. Karpiak Adam J. Engler Xiang-Dong Fu Alysson R. Muotri Adah Almutairi 《Proceedings of the National Academy of Sciences of the United States of America》2016,113(12):3185-3190
Probing a wide range of cellular phenotypes in neurodevelopmental disorders using patient-derived neural progenitor cells (NPCs) can be facilitated by 3D assays, as 2D systems cannot entirely recapitulate the arrangement of cells in the brain. Here, we developed a previously unidentified 3D migration and differentiation assay in layered hydrogels to examine how these processes are affected in neurodevelopmental disorders, such as Rett syndrome. Our soft 3D system mimics the brain environment and accelerates maturation of neurons from human induced pluripotent stem cell (iPSC)-derived NPCs, yielding electrophysiologically active neurons within just 3 wk. Using this platform, we revealed a genotype-specific effect of methyl-CpG-binding protein-2 (MeCP2) dysfunction on iPSC-derived neuronal migration and maturation (reduced neurite outgrowth and fewer synapses) in 3D layered hydrogels. Thus, this 3D system expands the range of neural phenotypes that can be studied in vitro to include those influenced by physical and mechanical stimuli or requiring specific arrangements of multiple cell types.Neuronal migration and maturation is a key step in brain development. Defects in this process have been implicated in many disorders, including autism (1) and schizophrenia (2). Thoroughly understanding how neural progenitor cell (NPC) migration is affected in neurodevelopmental disorders requires a means of dissecting the process using cells with genetic alterations matching those in patients. Existing in vitro assays of migration generally involve measurement of cell movement across a scratch or gap or through a membrane toward a chemoattractant in 2D culture systems. Although widely used, such assays may not accurately reveal in vivo differences, as neuronal migration is tightly regulated by physical and chemical cues in the extracellular matrix (ECM) that NPCs encounter as they migrate.In vitro 3D culture systems offer a solution to these limitations (3–7). Compared with 2D culture, a 3D arrangement allows neuronal cells to interact with many more cells (4); this similarity to the in vivo setting has been shown to lengthen viability, enhance survival, and allow formation of longer neurites and more dense networks in primary neurons in uniform matrices or aggregate culture (8, 9). Indeed, 3D culture systems have been used to study nerve regeneration, neuronal and glial development (10–12), and amyloid-β and tau pathology (13). Thus, measuring neuronal migration through a soft 3D matrix would continue this trend toward using 3D systems to study neuronal development and pathology.We sought to develop a 3D assay to examine potential migration and neuronal maturation defects in Rett syndrome (RTT), a genetic neurodevelopmental disorder that affects 1 in 10,000 children in the United States and is caused by mutations in the X-linked methyl-CpG-binding protein-2 (MECP2) gene (14). Studies using induced pluripotent stem cells (iPSCs) from RTT patients in traditional 2D adherent culture have revealed reduced neurite outgrowth and synapse number, as well as altered calcium transients and spontaneous postsynaptic currents (1). However, 2D migration assays seemed unlikely to reveal inherent defects in this developmental process, which could be affected because MeCP2 regulates multiple developmental related genes (15). Migration of RTT iPSC-derived NPCs has not previously been studied.Using a previously unidentified 3D tissue culture system that allows creation of layered architectures, we studied differences in migration of MeCP2-mutant iPSC-derived versus control iPSC-derived NPCs. This approach revealed a defect in migration of MeCP2-mutant iPSC-derived NPCs induced by either astrocytes or neurons. Further, this 3D system accelerated maturation of neurons from human iPSC-derived NPCs, yielding electrophysiologically active neurons within just 3 wk. With mature neurons derived from RTT patients and controls, we further confirmed defective neurite outgrowth and synaptogenesis in MeCP2-mutant neurons. Thus, this 3D system enables study of morphological features accessible in 2D system as well as previously unexamined phenotypes. 相似文献
97.
目的:比较3种不同类型磷酸川芎嗪鼻用原位凝胶与人工鼻液混合后的胶凝行为,筛选合适的凝胶基质类型,再以星点设计-效应面法确定基质的优选处方配比。方法:以凝胶强度与胶凝速度为指标,选出合适的磷酸川芎嗪原位凝胶基质类型。再以基质处方中主要成分及増黏剂含量为自变量,基质与人工鼻液混合后的胶凝温度为因变量,采用星点设计-效应面法优选制剂处方,并进行处方验证。结果:指标与因素之间采用二项式拟合,r2=0.978 7,优选处方P407用量为20.11%,P188用量为6.94%,PEG600用量为2.01%,3批验证样品胶凝温度均在32~34℃之间,说明二次模型拟合效果良好。结论:采用优选处方制备的温敏型磷酸川芎嗪鼻用原位凝胶具有理想的胶凝温度,星点设计-效应面法所建立的基质配比影响胶凝温度的数学模型具有良好的拟合精度与数据预测性。 相似文献
98.
《Biomaterials》2015
BackgroundCell death due to anoikis, necrosis and cell egress from transplantation sites limits functional benefits of cellular cardiomyoplasty. Cell dissociation and suspension, which are a pre-requisite for most cell transplantation studies, lead to depression of cellular metabolism and anoikis, which contribute to low engraftment.ObjectiveWe tissue engineered scaffolds with the goal of rapidly restoring metabolism, promoting viability, proliferation and engraftment of encapsulated stem cells.MethodsThe carboxyl groups of HA were functionalized with N-hydroxysuccinimide (NHS) to yield HA succinimidyl succinate (HA-NHS) groups that react with free amine groups to form amide bonds. HA-NHS was cross-linked by serum to generate HA:Serum (HA:Ser) hydrogels. Physical properties of HA:Ser hydrogels were measured. Effect of encapsulating cardiosphere-derived cells (CDCs) in HA:Ser hydrogels on viability, proliferation, glucose uptake and metabolism was assessed in vitro. In vivo acute intra-myocardial cell retention of 18FDG-labeled CDCs encapsulated in HA:Ser hydrogels was quantified. Effect of CDC encapsulation in HA:Ser hydrogels on in vivo metabolism and engraftment at 7 days was assessed by serial, dual isotope SPECT-CT and bioluminescence imaging of CDCs expressing the Na-iodide symporter and firefly luciferase genes respectively. Effect of HA:Ser hydrogels ± CDCs on cardiac function was assessed at 7 days & 28 days post-infarct.ResultsHA:Ser hydrogels are highly bio-adhesive, biodegradable, promote rapid cell adhesion, glucose uptake and restore bioenergetics of encapsulated cells within 1 h of encapsulation, both in vitro and in vivo. These metabolic scaffolds can be applied epicardially as a patch to beating hearts or injected intramyocardially. HA:Ser hydrogels markedly increase acute intramyocardial retention (∼6 fold), promote in vivo viability, proliferation, engraftment of encapsulated stem cells and angiogenesis.ConclusionHA:Ser hydrogels serve as ‘synthetic stem cell niches’ that rapidly restore metabolism of encapsulated stem cells, promote stem cell engraftment and angiogenesis. These first ever, tissue engineered metabolic scaffolds hold promise for clinical translation in conjunction with CDCs and possibly other stem cell types. 相似文献
99.
Juana E. Reyes‐Martínez Juan A. Ruiz‐Pacheco Mario A. Flores‐Valdz Mohamed A. Elsawy Alba A. Vallejo‐Cardona Luis A. Castillo‐Díaz 《Journal of tissue engineering and regenerative medicine》2019,13(8):1375-1393
Diabetes mellitus is a chronic disease characterized by high levels of glucose in the blood, which leads to metabolic disorders with severe consequences. Today, there is no cure for diabetes. The current management for diabetes and derived medical conditions, such as hyperglycemia, cardiovascular diseases, or diabetic foot ulcer, includes life style changes and hypoglycemia‐based therapy, which do not fully restore euglycemia or the functionality of damaged tissues in patients. This encourages scientists to work outside their boundaries to develop routes that can potentially tackle such metabolic disorders. In this regard, acellular and cellular approaches have represented an alternative for diabetics, although such treatments still face shortcomings related to limited effectiveness and immunogenicity. The advent of biomaterials has brought significant improvements for such approaches, and three‐dimensional extracellular matrix analogs, such as hydrogels, have played a key role in this regard. Advanced hydrogels are being developed to monitor high blood glucose levels and release insulin, as well as serve as a therapeutic technology. Herein, the state of the art in advanced hydrogels for improving treatment of diabetes, from laboratory technology to commercial products approved by drug safety regulatory authorities, will be concisely summarized and discussed. 相似文献
100.
The development of in vitro neural tissue analogs is of great interest for many biomedical engineering applications, including the tissue engineering of neural interfaces, treatment of neurodegenerative diseases, and in vitro evaluation of cell–material interactions. Since astrocytes play a crucial role in the regenerative processes of the central nervous system, the development of biomaterials that interact favorably with astrocytes is of great research interest. The sources of human astrocytes, suitable natural biomaterials, guidance scaffolds, and ligand patterned surfaces are discussed in the article. New findings in this field are essential for the future treatment of spinal cord and brain injuries. 相似文献